Spaces:
Sleeping
Sleeping
| """ | |
| This training script can be run both on a single gpu in debug mode, | |
| and also in a larger training run with distributed data parallel (ddp). | |
| To run on a single GPU, example: | |
| $ python train.py --batch_size=32 --compile=False | |
| To run with DDP on 4 gpus on 1 node, example: | |
| $ torchrun --standalone --nproc_per_node=4 train.py | |
| To run with DDP on 4 gpus across 2 nodes, example: | |
| - Run on the first (master) node with example IP 123.456.123.456: | |
| $ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr=123.456.123.456 --master_port=1234 train.py | |
| - Run on the worker node: | |
| $ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr=123.456.123.456 --master_port=1234 train.py | |
| (If your cluster does not have Infiniband interconnect prepend NCCL_IB_DISABLE=1) | |
| """ | |
| import os | |
| import time | |
| import math | |
| import pickle | |
| from contextlib import nullcontext | |
| import numpy as np | |
| import torch | |
| from torch.nn.parallel import DistributedDataParallel as DDP | |
| from torch.distributed import init_process_group, destroy_process_group | |
| from model import GPTConfig, GPT | |
| # ----------------------------------------------------------------------------- | |
| # default config values designed to train a gpt2 (124M) on OpenWebText | |
| # I/O | |
| out_dir = 'out' | |
| eval_interval = 2000 | |
| log_interval = 1 | |
| eval_iters = 200 | |
| eval_only = False # if True, script exits right after the first eval | |
| always_save_checkpoint = True # if True, always save a checkpoint after each eval | |
| init_from = 'scratch' # 'scratch' or 'resume' or 'gpt2*' | |
| # wandb logging | |
| wandb_log = False # disabled by default | |
| wandb_project = 'owt' | |
| wandb_run_name = 'gpt2' # 'run' + str(time.time()) | |
| # data | |
| dataset = 'openwebtext' | |
| gradient_accumulation_steps = 5 * 8 # used to simulate larger batch sizes | |
| batch_size = 12 # if gradient_accumulation_steps > 1, this is the micro-batch size | |
| block_size = 1024 | |
| # model | |
| n_layer = 12 | |
| n_head = 12 | |
| n_embd = 768 | |
| dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+ | |
| bias = False # do we use bias inside LayerNorm and Linear layers? | |
| # adamw optimizer | |
| learning_rate = 6e-4 # max learning rate | |
| max_iters = 600000 # total number of training iterations | |
| weight_decay = 1e-1 | |
| beta1 = 0.9 | |
| beta2 = 0.95 | |
| grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0 | |
| # learning rate decay settings | |
| decay_lr = True # whether to decay the learning rate | |
| warmup_iters = 2000 # how many steps to warm up for | |
| lr_decay_iters = 600000 # should be ~= max_iters per Chinchilla | |
| min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla | |
| # DDP settings | |
| backend = 'nccl' # 'nccl', 'gloo', etc. | |
| # system | |
| device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks | |
| dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler | |
| compile = True # use PyTorch 2.0 to compile the model to be faster | |
| # ----------------------------------------------------------------------------- | |
| config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))] | |
| exec(open('configurator.py').read()) # overrides from command line or config file | |
| config = {k: globals()[k] for k in config_keys} # will be useful for logging | |
| # ----------------------------------------------------------------------------- | |
| # various inits, derived attributes, I/O setup | |
| ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run? | |
| if ddp: | |
| init_process_group(backend=backend) | |
| ddp_rank = int(os.environ['RANK']) | |
| ddp_local_rank = int(os.environ['LOCAL_RANK']) | |
| ddp_world_size = int(os.environ['WORLD_SIZE']) | |
| device = f'cuda:{ddp_local_rank}' | |
| torch.cuda.set_device(device) | |
| master_process = ddp_rank == 0 # this process will do logging, checkpointing etc. | |
| seed_offset = ddp_rank # each process gets a different seed | |
| # world_size number of processes will be training simultaneously, so we can scale | |
| # down the desired gradient accumulation iterations per process proportionally | |
| assert gradient_accumulation_steps % ddp_world_size == 0 | |
| gradient_accumulation_steps //= ddp_world_size | |
| else: | |
| # if not ddp, we are running on a single gpu, and one process | |
| master_process = True | |
| seed_offset = 0 | |
| ddp_world_size = 1 | |
| tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size | |
| print(f"tokens per iteration will be: {tokens_per_iter:,}") | |
| if master_process: | |
| os.makedirs(out_dir, exist_ok=True) | |
| torch.manual_seed(1337 + seed_offset) | |
| torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul | |
| torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn | |
| device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast | |
| # note: float16 data type will automatically use a GradScaler | |
| ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
| ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
| # poor man's data loader | |
| data_dir = os.path.join('data', dataset) | |
| def get_batch(split): | |
| # We recreate np.memmap every batch to avoid a memory leak, as per | |
| # https://stackoverflow.com/questions/45132940/numpy-memmap-memory-usage-want-to-iterate-once/61472122#61472122 | |
| if split == 'train': | |
| data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r') | |
| else: | |
| data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r') | |
| ix = torch.randint(len(data) - block_size, (batch_size,)) | |
| x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix]) | |
| y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix]) | |
| if device_type == 'cuda': | |
| # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True) | |
| x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True) | |
| else: | |
| x, y = x.to(device), y.to(device) | |
| return x, y | |
| # init these up here, can override if init_from='resume' (i.e. from a checkpoint) | |
| iter_num = 0 | |
| best_val_loss = 1e9 | |
| # attempt to derive vocab_size from the dataset | |
| meta_path = os.path.join(data_dir, 'meta.pkl') | |
| meta_vocab_size = None | |
| if os.path.exists(meta_path): | |
| with open(meta_path, 'rb') as f: | |
| meta = pickle.load(f) | |
| meta_vocab_size = meta['vocab_size'] | |
| print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})") | |
| # model init | |
| model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size, | |
| bias=bias, vocab_size=None, dropout=dropout) # start with model_args from command line | |
| if init_from == 'scratch': | |
| # init a new model from scratch | |
| print("Initializing a new model from scratch") | |
| # determine the vocab size we'll use for from-scratch training | |
| if meta_vocab_size is None: | |
| print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)") | |
| model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304 | |
| gptconf = GPTConfig(**model_args) | |
| model = GPT(gptconf) | |
| elif init_from == 'resume': | |
| print(f"Resuming training from {out_dir}") | |
| # resume training from a checkpoint - find the latest numbered checkpoint | |
| import glob | |
| ckpt_files = glob.glob(os.path.join(out_dir, 'ckpt_*.pt')) | |
| if not ckpt_files: | |
| # fallback to old checkpoint name | |
| ckpt_path = os.path.join(out_dir, 'ckpt.pt') | |
| else: | |
| # get the latest checkpoint by sorting numerically | |
| ckpt_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0])) | |
| ckpt_path = ckpt_files[-1] | |
| print(f"Loading checkpoint from {ckpt_path}") | |
| checkpoint = torch.load(ckpt_path, map_location=device) | |
| checkpoint_model_args = checkpoint['model_args'] | |
| # force these config attributes to be equal otherwise we can't even resume training | |
| # the rest of the attributes (e.g. dropout) can stay as desired from command line | |
| for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']: | |
| model_args[k] = checkpoint_model_args[k] | |
| # create the model | |
| gptconf = GPTConfig(**model_args) | |
| model = GPT(gptconf) | |
| state_dict = checkpoint['model'] | |
| # fix the keys of the state dictionary :( | |
| # honestly no idea how checkpoints sometimes get this prefix, have to debug more | |
| unwanted_prefix = '_orig_mod.' | |
| for k,v in list(state_dict.items()): | |
| if k.startswith(unwanted_prefix): | |
| state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) | |
| model.load_state_dict(state_dict) | |
| iter_num = checkpoint['iter_num'] | |
| best_val_loss = checkpoint['best_val_loss'] | |
| elif init_from.startswith('gpt2'): | |
| print(f"Initializing from OpenAI GPT-2 weights: {init_from}") | |
| # initialize from OpenAI GPT-2 weights | |
| override_args = dict(dropout=dropout) | |
| model = GPT.from_pretrained(init_from, override_args) | |
| # read off the created config params, so we can store them into checkpoint correctly | |
| for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']: | |
| model_args[k] = getattr(model.config, k) | |
| # crop down the model block size if desired, using model surgery | |
| if block_size < model.config.block_size: | |
| model.crop_block_size(block_size) | |
| model_args['block_size'] = block_size # so that the checkpoint will have the right value | |
| model.to(device) | |
| # initialize a GradScaler. If enabled=False scaler is a no-op | |
| scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16')) | |
| # optimizer | |
| optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type) | |
| if init_from == 'resume': | |
| optimizer.load_state_dict(checkpoint['optimizer']) | |
| checkpoint = None # free up memory | |
| # compile the model | |
| if compile: | |
| print("compiling the model... (takes a ~minute)") | |
| unoptimized_model = model | |
| model = torch.compile(model) # requires PyTorch 2.0 | |
| # wrap model into DDP container | |
| if ddp: | |
| model = DDP(model, device_ids=[ddp_local_rank]) | |
| # helps estimate an arbitrarily accurate loss over either split using many batches | |
| def estimate_loss(): | |
| out = {} | |
| model.eval() | |
| for split in ['train', 'val']: | |
| losses = torch.zeros(eval_iters) | |
| for k in range(eval_iters): | |
| X, Y = get_batch(split) | |
| with ctx: | |
| logits, loss = model(X, Y) | |
| losses[k] = loss.item() | |
| out[split] = losses.mean() | |
| model.train() | |
| return out | |
| # learning rate decay scheduler (cosine with warmup) | |
| def get_lr(it): | |
| # 1) linear warmup for warmup_iters steps | |
| if it < warmup_iters: | |
| return learning_rate * (it + 1) / (warmup_iters + 1) | |
| # 2) if it > lr_decay_iters, return min learning rate | |
| if it > lr_decay_iters: | |
| return min_lr | |
| # 3) in between, use cosine decay down to min learning rate | |
| decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters) | |
| assert 0 <= decay_ratio <= 1 | |
| coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1 | |
| return min_lr + coeff * (learning_rate - min_lr) | |
| # logging | |
| if wandb_log and master_process: | |
| import wandb | |
| wandb.init(project=wandb_project, name=wandb_run_name, config=config) | |
| # training loop | |
| X, Y = get_batch('train') # fetch the very first batch | |
| t0 = time.time() | |
| local_iter_num = 0 # number of iterations in the lifetime of this process | |
| raw_model = model.module if ddp else model # unwrap DDP container if needed | |
| running_mfu = -1.0 | |
| while True: | |
| # determine and set the learning rate for this iteration | |
| lr = get_lr(iter_num) if decay_lr else learning_rate | |
| for param_group in optimizer.param_groups: | |
| param_group['lr'] = lr | |
| # evaluate the loss on train/val sets and write checkpoints | |
| if iter_num % eval_interval == 0 and master_process: | |
| losses = estimate_loss() | |
| print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") | |
| if wandb_log: | |
| wandb.log({ | |
| "iter": iter_num, | |
| "train/loss": losses['train'], | |
| "val/loss": losses['val'], | |
| "lr": lr, | |
| "mfu": running_mfu*100, # convert to percentage | |
| }) | |
| if losses['val'] < best_val_loss or always_save_checkpoint: | |
| best_val_loss = losses['val'] | |
| checkpoint = { | |
| 'model': raw_model.state_dict(), | |
| 'optimizer': optimizer.state_dict(), | |
| 'model_args': model_args, | |
| 'iter_num': iter_num, | |
| 'best_val_loss': best_val_loss, | |
| 'config': config, | |
| } | |
| checkpoint_filename = f'ckpt_{iter_num:06d}.pt' | |
| print(f"saving checkpoint to {out_dir}/{checkpoint_filename}") | |
| torch.save(checkpoint, os.path.join(out_dir, checkpoint_filename)) | |
| if iter_num == 0 and eval_only: | |
| break | |
| # forward backward update, with optional gradient accumulation to simulate larger batch size | |
| # and using the GradScaler if data type is float16 | |
| for micro_step in range(gradient_accumulation_steps): | |
| if ddp: | |
| # in DDP training we only need to sync gradients at the last micro step. | |
| # the official way to do this is with model.no_sync() context manager, but | |
| # I really dislike that this bloats the code and forces us to repeat code | |
| # looking at the source of that context manager, it just toggles this variable | |
| model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1) | |
| with ctx: | |
| logits, loss = model(X, Y) | |
| loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation | |
| # immediately async prefetch next batch while model is doing the forward pass on the GPU | |
| X, Y = get_batch('train') | |
| # backward pass, with gradient scaling if training in fp16 | |
| scaler.scale(loss).backward() | |
| # clip the gradient | |
| if grad_clip != 0.0: | |
| scaler.unscale_(optimizer) | |
| torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) | |
| # step the optimizer and scaler if training in fp16 | |
| scaler.step(optimizer) | |
| scaler.update() | |
| # flush the gradients as soon as we can, no need for this memory anymore | |
| optimizer.zero_grad(set_to_none=True) | |
| # timing and logging | |
| t1 = time.time() | |
| dt = t1 - t0 | |
| t0 = t1 | |
| if iter_num % log_interval == 0 and master_process: | |
| # get loss as float. note: this is a CPU-GPU sync point | |
| # scale up to undo the division above, approximating the true total loss (exact would have been a sum) | |
| lossf = loss.item() * gradient_accumulation_steps | |
| if local_iter_num >= 5: # let the training loop settle a bit | |
| mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt) | |
| running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu | |
| print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%") | |
| iter_num += 1 | |
| local_iter_num += 1 | |
| # termination conditions | |
| if iter_num > max_iters: | |
| break | |
| if ddp: | |
| destroy_process_group() | |