Spaces:
Runtime error
Runtime error
| import os | |
| os.environ["TOKENIZERS_PARALLELISM"] = "true" | |
| from PIL import Image | |
| from tqdm import tqdm | |
| import numpy as np | |
| import torch | |
| import wandb | |
| from models import Showo, MAGVITv2, get_mask_chedule | |
| from prompting_utils import UniversalPrompting, create_attention_mask_predict_next | |
| from training.utils import get_config, flatten_omega_conf, image_transform | |
| from transformers import AutoTokenizer | |
| import torch.nn.functional as F | |
| def get_vq_model_class(model_type): | |
| if model_type == "magvitv2": | |
| return MAGVITv2 | |
| else: | |
| raise ValueError(f"model_type {model_type} not supported.") | |
| if __name__ == '__main__': | |
| config = get_config() | |
| resume_wandb_run = config.wandb.resume | |
| run_id = config.wandb.get("run_id", None) | |
| if run_id is None: | |
| resume_wandb_run = False | |
| run_id = wandb.util.generate_id() | |
| config.wandb.run_id = run_id | |
| wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)} | |
| wandb.init( | |
| project="demo", | |
| name=config.experiment.name + '_t2i' + f'_{config.mode}', | |
| config=wandb_config, | |
| ) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| tokenizer = AutoTokenizer.from_pretrained(config.model.showo.llm_model_path, padding_side="left") | |
| uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, | |
| special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"), | |
| ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob) | |
| vq_model = get_vq_model_class(config.model.vq_model.type) | |
| vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device) | |
| vq_model.requires_grad_(False) | |
| vq_model.eval() | |
| model = Showo.from_pretrained(config.model.showo.pretrained_model_path).to(device) | |
| model.eval() | |
| mask_token_id = model.config.mask_token_id | |
| # load from users passed arguments | |
| if config.get("validation_prompts_file", None) is not None: | |
| config.dataset.params.validation_prompts_file = config.validation_prompts_file | |
| config.training.batch_size = config.batch_size | |
| config.training.guidance_scale = config.guidance_scale | |
| config.training.generation_timesteps = config.generation_timesteps | |
| # load from users passed arguments | |
| if config.mode == 'inpainting': | |
| prompt = [config.prompt] * config.batch_size | |
| inpainting_image = Image.open(config.image_path).convert("RGB") | |
| inpainting_mask = Image.open(config.inpainting_mask_path).convert("L") | |
| import pdb | |
| pdb.set_trace() | |
| inpainting_image = image_transform(inpainting_image, resolution=config.dataset.params.resolution).to(device) | |
| inpainting_mask = image_transform(inpainting_mask, resolution=config.dataset.params.resolution, normalize=False) | |
| # record original image and inpainting mask | |
| images = torch.clamp( | |
| (torch.stack([inpainting_image, inpainting_mask.repeat(3, 1, 1).to(device)], dim=0) + 1.0) / 2.0, | |
| min=0.0, max=1.0) | |
| images *= 255.0 | |
| images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) | |
| pil_images = [Image.fromarray(image) for image in images] | |
| labels = ['original image', 'inpainting mask'] | |
| wandb_images = [wandb.Image(image, caption=labels[i]) for i, image in enumerate(pil_images)] | |
| inpainting_image = inpainting_image.unsqueeze(0).repeat(config.training.batch_size, 1, 1, 1) | |
| inpainting_mask = inpainting_mask.unsqueeze(0).to(device) | |
| inpainting_mask = F.interpolate(inpainting_mask, size=config.dataset.params.resolution // 16, mode='bicubic') | |
| inpainting_mask = inpainting_mask.repeat(config.training.batch_size, 1, 1, 1) | |
| inpainting_mask[inpainting_mask < 0.5] = 0 | |
| inpainting_mask[inpainting_mask >= 0.5] = 1 | |
| inpainting_mask = inpainting_mask.reshape(config.training.batch_size, -1) | |
| inpainting_mask = inpainting_mask.to(torch.bool) | |
| inpainting_image_tokens = vq_model.get_code(inpainting_image) + len(uni_prompting.text_tokenizer) | |
| inpainting_image_tokens[inpainting_mask] = mask_token_id | |
| input_ids, _ = uni_prompting((prompt, inpainting_image_tokens), 't2i_gen') | |
| if config.training.guidance_scale > 0: | |
| uncond_input_ids, _ = uni_prompting(([''] * len(prompt), inpainting_image_tokens), 't2i_gen') | |
| attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0), | |
| pad_id=int(uni_prompting.sptids_dict['<|pad|>']), | |
| soi_id=int(uni_prompting.sptids_dict['<|soi|>']), | |
| eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), | |
| rm_pad_in_image=True) | |
| else: | |
| attention_mask = create_attention_mask_predict_next(input_ids, | |
| pad_id=int(uni_prompting.sptids_dict['<|pad|>']), | |
| soi_id=int(uni_prompting.sptids_dict['<|soi|>']), | |
| eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), | |
| rm_pad_in_image=True) | |
| uncond_input_ids = None | |
| if config.get("mask_schedule", None) is not None: | |
| schedule = config.mask_schedule.schedule | |
| args = config.mask_schedule.get("params", {}) | |
| mask_schedule = get_mask_chedule(schedule, **args) | |
| else: | |
| mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine")) | |
| with torch.no_grad(): | |
| gen_token_ids = model.t2i_generate( | |
| input_ids=input_ids, | |
| uncond_input_ids=uncond_input_ids, | |
| attention_mask=attention_mask, | |
| guidance_scale=config.training.guidance_scale, | |
| temperature=config.training.get("generation_temperature", 1.0), | |
| timesteps=config.training.generation_timesteps, | |
| noise_schedule=mask_schedule, | |
| noise_type=config.training.get("noise_type", "mask"), | |
| seq_len=config.model.showo.num_vq_tokens, | |
| uni_prompting=uni_prompting, | |
| config=config, | |
| ) | |
| gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0) | |
| images = vq_model.decode_code(gen_token_ids) | |
| images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) | |
| images *= 255.0 | |
| images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) | |
| pil_images = [Image.fromarray(image) for image in images] | |
| # import ipdb | |
| # ipdb.set_trace() | |
| wandb_images.extend([wandb.Image(image, caption=prompt[i]) for i, image in enumerate(pil_images)]) | |
| wandb.log({"generated_images": wandb_images}, step=0) | |
| elif config.mode == 'extrapolation': | |
| prompt = [p for p in config.prompt.split(" *** ") if len(p) != 0] | |
| extra_direction = [d for d in config.extra_direction.split(" *** ") if len(d) != 0] | |
| print(prompt, extra_direction) | |
| W = config.dataset.params.resolution // 16 | |
| for id, (prt, direction) in enumerate(zip(prompt, extra_direction)): | |
| prt = [prt] * config.training.batch_size | |
| if id == 0: | |
| extrapolation_image = Image.open(config.image_path).convert("RGB") | |
| extrapolation_image = image_transform(extrapolation_image, | |
| resolution=config.dataset.params.resolution).to(device) | |
| B, _, _ = extrapolation_image.shape | |
| extrapolation_image = extrapolation_image.unsqueeze(0) | |
| extrapolation_image_tokens = vq_model.get_code(extrapolation_image) + len(uni_prompting.text_tokenizer) | |
| extrapolation_image_tokens = extrapolation_image_tokens.reshape(1, | |
| config.dataset.params.resolution // 16, | |
| config.dataset.params.resolution // 16) | |
| extrapolation_image_tokens = extrapolation_image_tokens.repeat(config.training.batch_size, 1, 1) | |
| else: | |
| extrapolation_image_tokens = gen_token_ids + len(uni_prompting.text_tokenizer) | |
| image_left_part = extrapolation_image_tokens[:, :, :-(W//2-config.offset)] - len(uni_prompting.text_tokenizer) | |
| image_right_part = extrapolation_image_tokens[:, :, W//2-config.offset:] - len(uni_prompting.text_tokenizer) | |
| image_up_part = extrapolation_image_tokens[:, :-(W//2-config.offset), :] - len(uni_prompting.text_tokenizer) | |
| image_down_part = extrapolation_image_tokens[:, W//2-config.offset:, :] - len(uni_prompting.text_tokenizer) | |
| if direction in ['left', 'right']: | |
| extrapolation_mask = torch.zeros((config.training.batch_size, | |
| config.dataset.params.resolution // 16, | |
| config.dataset.params.resolution // 16 // 2 + config.offset), | |
| dtype=torch.int64, device=device) + mask_token_id | |
| else: | |
| extrapolation_mask = torch.zeros((config.training.batch_size, | |
| config.dataset.params.resolution // 16 // 2 + config.offset, | |
| config.dataset.params.resolution // 16), | |
| dtype=torch.int64, device=device) + mask_token_id | |
| if direction == 'left': | |
| extrapolation_image_tokens = torch.cat( | |
| [extrapolation_mask, extrapolation_image_tokens[:, :, :W//2-config.offset]], dim=-1) | |
| elif direction == 'right': | |
| extrapolation_image_tokens = torch.cat( | |
| [extrapolation_image_tokens[:, :, -(W//2-config.offset):], extrapolation_mask], dim=-1) | |
| elif direction == 'up': | |
| extrapolation_image_tokens = torch.cat( | |
| [extrapolation_mask, extrapolation_image_tokens[:, :W // 2 - config.offset, :]], dim=-2) | |
| else: | |
| extrapolation_image_tokens = torch.cat( | |
| [extrapolation_image_tokens[:, -(W // 2 - config.offset):, :], extrapolation_mask], dim=-2) | |
| extrapolation_image_tokens = extrapolation_image_tokens.reshape(config.training.batch_size, -1) | |
| input_ids, _ = uni_prompting((prt, extrapolation_image_tokens), 't2i_gen') | |
| if config.training.guidance_scale > 0: | |
| uncond_input_ids, _ = uni_prompting(([''] * len(prt), extrapolation_image_tokens), 't2i_gen') | |
| attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0), | |
| pad_id=int(uni_prompting.sptids_dict['<|pad|>']), | |
| soi_id=int(uni_prompting.sptids_dict['<|soi|>']), | |
| eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), | |
| rm_pad_in_image=True) | |
| else: | |
| attention_mask = create_attention_mask_predict_next(input_ids, | |
| pad_id=int(uni_prompting.sptids_dict['<|pad|>']), | |
| soi_id=int(uni_prompting.sptids_dict['<|soi|>']), | |
| eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), | |
| rm_pad_in_image=True) | |
| uncond_input_ids = None | |
| if config.get("mask_schedule", None) is not None: | |
| schedule = config.mask_schedule.schedule | |
| args = config.mask_schedule.get("params", {}) | |
| mask_schedule = get_mask_chedule(schedule, **args) | |
| else: | |
| mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine")) | |
| with torch.no_grad(): | |
| gen_token_ids = model.t2i_generate( | |
| input_ids=input_ids, | |
| uncond_input_ids=uncond_input_ids, | |
| attention_mask=attention_mask, | |
| guidance_scale=config.training.guidance_scale, | |
| temperature=config.training.get("generation_temperature", 1.0), | |
| timesteps=config.training.generation_timesteps, | |
| noise_schedule=mask_schedule, | |
| noise_type=config.training.get("noise_type", "mask"), | |
| seq_len=config.model.showo.num_vq_tokens, | |
| uni_prompting=uni_prompting, | |
| config=config, | |
| ) | |
| gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0) | |
| gen_token_ids = gen_token_ids.reshape(config.training.batch_size, | |
| config.dataset.params.resolution // 16, | |
| config.dataset.params.resolution // 16) | |
| if direction == 'left': | |
| gen_token_ids = torch.cat([gen_token_ids, image_right_part], dim=-1) | |
| elif direction == 'right': | |
| gen_token_ids = torch.cat([image_left_part, gen_token_ids], dim=-1) | |
| elif direction == 'up': | |
| gen_token_ids = torch.cat([gen_token_ids, image_down_part], dim=-2) | |
| else: | |
| gen_token_ids = torch.cat([image_left_part, gen_token_ids], dim=-2) | |
| _, h, w = gen_token_ids.shape | |
| gen_token_ids = gen_token_ids.reshape(config.training.batch_size, -1) | |
| images = vq_model.decode_code(gen_token_ids, shape=(h, w)) | |
| images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) | |
| images *= 255.0 | |
| images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) | |
| pil_images = [Image.fromarray(image) for image in images] | |
| wandb_images = [wandb.Image(image, caption=' '.join(prompt)) for i, image in enumerate(pil_images)] | |
| wandb.log({"generated_images": wandb_images}, step=0) | |
| elif config.mode == 't2i': | |
| with open(config.dataset.params.validation_prompts_file, "r") as f: | |
| validation_prompts = f.read().splitlines() | |
| for step in tqdm(range(0, len(validation_prompts), config.training.batch_size)): | |
| prompts = validation_prompts[step:step + config.training.batch_size] | |
| image_tokens = torch.ones((len(prompts), config.model.showo.num_vq_tokens), | |
| dtype=torch.long, device=device) * mask_token_id | |
| input_ids, _ = uni_prompting((prompts, image_tokens), 't2i_gen') | |
| if config.training.guidance_scale > 0: | |
| uncond_input_ids, _ = uni_prompting(([''] * len(prompts), image_tokens), 't2i_gen') | |
| attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0), | |
| pad_id=int(uni_prompting.sptids_dict['<|pad|>']), | |
| soi_id=int(uni_prompting.sptids_dict['<|soi|>']), | |
| eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), | |
| rm_pad_in_image=True) | |
| else: | |
| attention_mask = create_attention_mask_predict_next(input_ids, | |
| pad_id=int(uni_prompting.sptids_dict['<|pad|>']), | |
| soi_id=int(uni_prompting.sptids_dict['<|soi|>']), | |
| eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), | |
| rm_pad_in_image=True) | |
| uncond_input_ids = None | |
| if config.get("mask_schedule", None) is not None: | |
| schedule = config.mask_schedule.schedule | |
| args = config.mask_schedule.get("params", {}) | |
| mask_schedule = get_mask_chedule(schedule, **args) | |
| else: | |
| mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine")) | |
| with torch.no_grad(): | |
| gen_token_ids = model.t2i_generate( | |
| input_ids=input_ids, | |
| uncond_input_ids=uncond_input_ids, | |
| attention_mask=attention_mask, | |
| guidance_scale=config.training.guidance_scale, | |
| temperature=config.training.get("generation_temperature", 1.0), | |
| timesteps=config.training.generation_timesteps, | |
| noise_schedule=mask_schedule, | |
| noise_type=config.training.get("noise_type", "mask"), | |
| seq_len=config.model.showo.num_vq_tokens, | |
| uni_prompting=uni_prompting, | |
| config=config, | |
| ) | |
| gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0) | |
| images = vq_model.decode_code(gen_token_ids) | |
| images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) | |
| images *= 255.0 | |
| images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) | |
| pil_images = [Image.fromarray(image) for image in images] | |
| wandb_images = [wandb.Image(image, caption=prompts[i]) for i, image in enumerate(pil_images)] | |
| wandb.log({"generated_images": wandb_images}, step=step) | |