Spaces:
Paused
Paused
| import gradio as gr | |
| import torch | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| import re | |
| # Load the model on CPU | |
| def load_model(): | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| "prithivMLmods/Qwen2-VL-OCR-2B-Instruct", | |
| torch_dtype=torch.float32, | |
| device_map="cpu" | |
| ) | |
| processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen2-VL-OCR-2B-Instruct") | |
| return model, processor | |
| # Function to extract medicine names | |
| def extract_medicine_names(image): | |
| model, processor = load_model() | |
| # Prepare the message with the specific prompt for medicine extraction | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image, | |
| }, | |
| {"type": "text", "text": "Extract and list ONLY the names of medicines/drugs from this prescription image. Output the medicine names as a numbered list without any additional information or descriptions."}, | |
| ], | |
| } | |
| ] | |
| # Prepare for inference | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| # Generate output | |
| generated_ids = model.generate(**inputs, max_new_tokens=256) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| )[0] | |
| # Remove <|im_end|> and any other special tokens that might appear in the output | |
| output_text = output_text.replace("<|im_end|>", "").strip() | |
| return output_text | |
| # Create a singleton model and processor to avoid reloading for each request | |
| model_instance = None | |
| processor_instance = None | |
| def get_model_and_processor(): | |
| global model_instance, processor_instance | |
| if model_instance is None or processor_instance is None: | |
| model_instance, processor_instance = load_model() | |
| return model_instance, processor_instance | |
| # Optimized extraction function that uses the singleton model | |
| def extract_medicine_names_optimized(image): | |
| if image is None: | |
| return "Please upload an image." | |
| model, processor = get_model_and_processor() | |
| # Prepare the message with the specific prompt for medicine extraction | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image, | |
| }, | |
| {"type": "text", "text": "Extract and list ONLY the names of medicines/drugs from this prescription image. Output the medicine names as a numbered list without any additional information or descriptions."}, | |
| ], | |
| } | |
| ] | |
| # Prepare for inference | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| # Generate output | |
| generated_ids = model.generate(**inputs, max_new_tokens=256) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| )[0] | |
| # Remove <|im_end|> and any other special tokens that might appear in the output | |
| output_text = output_text.replace("<|im_end|>", "").strip() | |
| return output_text | |
| # Create Gradio interface | |
| with gr.Blocks(title="Medicine Name Extractor") as app: | |
| gr.Markdown("# Medicine Name Extractor") | |
| gr.Markdown("Upload a medical prescription image to extract the names of medicines.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(type="pil", label="Upload Prescription Image") | |
| extract_btn = gr.Button("Extract Medicine Names", variant="primary") | |
| with gr.Column(): | |
| output_text = gr.Textbox(label="Extracted Medicine Names", lines=10) | |
| extract_btn.click( | |
| fn=extract_medicine_names_optimized, | |
| inputs=input_image, | |
| outputs=output_text | |
| ) | |
| gr.Markdown("### Notes") | |
| gr.Markdown("- This tool uses the Qwen2-VL-OCR model to extract text from prescription images") | |
| gr.Markdown("- For best results, ensure the prescription image is clear and readable") | |
| gr.Markdown("- Processing may take some time as the model runs on CPU") | |
| # Launch the app | |
| if __name__ == "__main__": | |
| app.launch() |