Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,38 +1,15 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers.image_utils import load_image
|
| 3 |
-
from threading import Thread
|
| 4 |
-
import time
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
|
|
|
|
|
|
| 7 |
from transformers import (
|
| 8 |
Qwen2VLForConditionalGeneration,
|
| 9 |
AutoProcessor,
|
| 10 |
TextIteratorStreamer,
|
| 11 |
)
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
# Helper Functions
|
| 15 |
-
# ---------------------------
|
| 16 |
-
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
|
| 17 |
-
"""
|
| 18 |
-
Returns an HTML snippet for a thin animated progress bar with a label.
|
| 19 |
-
"""
|
| 20 |
-
return f'''
|
| 21 |
-
<div style="display: flex; align-items: center;">
|
| 22 |
-
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
| 23 |
-
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
|
| 24 |
-
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
|
| 25 |
-
</div>
|
| 26 |
-
</div>
|
| 27 |
-
<style>
|
| 28 |
-
@keyframes loading {{
|
| 29 |
-
0% {{ transform: translateX(-100%); }}
|
| 30 |
-
100% {{ transform: translateX(100%); }}
|
| 31 |
-
}}
|
| 32 |
-
</style>
|
| 33 |
-
'''
|
| 34 |
-
|
| 35 |
-
# Model and Processor Setup - CPU version
|
| 36 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 37 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 38 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
@@ -41,23 +18,18 @@ model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
| 41 |
torch_dtype=torch.float32 # Using float32 for CPU compatibility
|
| 42 |
).to("cpu").eval()
|
| 43 |
|
| 44 |
-
|
| 45 |
-
def extract_medicines(image_files):
|
| 46 |
"""Extract medicine names from prescription images."""
|
| 47 |
-
if
|
| 48 |
return "Please upload a prescription image."
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
image_paths = [file.name for file in image_files] if isinstance(image_files, list) else [image_files.name]
|
| 52 |
-
images = [load_image(path) for path in image_paths]
|
| 53 |
-
|
| 54 |
-
# Specific prompt to extract only medicine names
|
| 55 |
text = "Extract ONLY the names of medications/medicines from this prescription image. Format the output as a numbered list of medicine names only, without dosages or instructions."
|
| 56 |
|
| 57 |
messages = [{
|
| 58 |
"role": "user",
|
| 59 |
"content": [
|
| 60 |
-
|
| 61 |
{"type": "text", "text": text},
|
| 62 |
],
|
| 63 |
}]
|
|
@@ -65,59 +37,34 @@ def extract_medicines(image_files):
|
|
| 65 |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 66 |
inputs = processor(
|
| 67 |
text=[prompt_full],
|
| 68 |
-
images=
|
| 69 |
return_tensors="pt",
|
| 70 |
padding=True,
|
| 71 |
).to("cpu")
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
buffer += new_text
|
| 84 |
-
buffer = buffer.replace("<|im_end|>", "")
|
| 85 |
-
time.sleep(0.01)
|
| 86 |
-
yield buffer
|
| 87 |
|
| 88 |
-
# Gradio
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
gr.
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
file_types=["image"]
|
| 99 |
-
)
|
| 100 |
-
extract_btn = gr.Button("Extract Medicine Names", variant="primary")
|
| 101 |
-
|
| 102 |
-
with gr.Column():
|
| 103 |
-
output = gr.Markdown(label="Extracted Medicine Names")
|
| 104 |
-
|
| 105 |
-
extract_btn.click(
|
| 106 |
-
fn=extract_medicines,
|
| 107 |
-
inputs=image_input,
|
| 108 |
-
outputs=output
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
# Note: For examples to work with current Gradio versions, you need a different approach
|
| 112 |
-
# than what I previously provided. Remove examples for now to fix the immediate error.
|
| 113 |
-
|
| 114 |
-
gr.Markdown("""
|
| 115 |
-
### Notes:
|
| 116 |
-
- This app is optimized to run on CPU
|
| 117 |
-
- Upload clear images of prescriptions for best results
|
| 118 |
-
- Only medicine names will be extracted
|
| 119 |
-
- Processing might take a minute or two on CPU
|
| 120 |
-
""")
|
| 121 |
|
| 122 |
-
|
| 123 |
-
demo.launch(debug=True)
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
+
import time
|
| 5 |
+
from threading import Thread
|
| 6 |
from transformers import (
|
| 7 |
Qwen2VLForConditionalGeneration,
|
| 8 |
AutoProcessor,
|
| 9 |
TextIteratorStreamer,
|
| 10 |
)
|
| 11 |
|
| 12 |
+
# Load model and processor - CPU version
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 14 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 15 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
|
| 18 |
torch_dtype=torch.float32 # Using float32 for CPU compatibility
|
| 19 |
).to("cpu").eval()
|
| 20 |
|
| 21 |
+
def extract_medicines(image):
|
|
|
|
| 22 |
"""Extract medicine names from prescription images."""
|
| 23 |
+
if image is None:
|
| 24 |
return "Please upload a prescription image."
|
| 25 |
|
| 26 |
+
# Process the image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
text = "Extract ONLY the names of medications/medicines from this prescription image. Format the output as a numbered list of medicine names only, without dosages or instructions."
|
| 28 |
|
| 29 |
messages = [{
|
| 30 |
"role": "user",
|
| 31 |
"content": [
|
| 32 |
+
{"type": "image", "image": Image.open(image)},
|
| 33 |
{"type": "text", "text": text},
|
| 34 |
],
|
| 35 |
}]
|
|
|
|
| 37 |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 38 |
inputs = processor(
|
| 39 |
text=[prompt_full],
|
| 40 |
+
images=[Image.open(image)],
|
| 41 |
return_tensors="pt",
|
| 42 |
padding=True,
|
| 43 |
).to("cpu")
|
| 44 |
|
| 45 |
+
# Generate response
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
output = model.generate(**inputs, max_new_tokens=512)
|
| 48 |
|
| 49 |
+
# Decode and return response
|
| 50 |
+
response = processor.decode(output[0], skip_special_tokens=True)
|
| 51 |
|
| 52 |
+
# Clean up the response to get just the model's answer
|
| 53 |
+
if "<|assistant|>" in response:
|
| 54 |
+
response = response.split("<|assistant|>")[1].strip()
|
| 55 |
|
| 56 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# Create a simple Gradio interface
|
| 59 |
+
demo = gr.Interface(
|
| 60 |
+
fn=extract_medicines,
|
| 61 |
+
inputs=gr.Image(type="filepath", label="Upload Prescription Image"),
|
| 62 |
+
outputs=gr.Textbox(label="Extracted Medicine Names"),
|
| 63 |
+
title="Medicine Name Extractor",
|
| 64 |
+
description="Upload prescription images to extract medicine names",
|
| 65 |
+
examples=[["examples/prescription1.jpg"]], # Update with your actual example paths or remove if not available
|
| 66 |
+
cache_examples=True,
|
| 67 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
if __name__ == "__main__":
|
| 70 |
+
demo.launch(debug=True)
|