Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,146 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
from transformers import (
|
| 7 |
-
Qwen2VLForConditionalGeneration,
|
| 8 |
-
AutoProcessor,
|
| 9 |
-
TextIteratorStreamer,
|
| 10 |
-
)
|
| 11 |
|
| 12 |
-
# Load model
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
if image is None:
|
| 24 |
-
return "Please upload
|
| 25 |
|
| 26 |
-
|
| 27 |
-
text = "Extract ONLY the names of medications/medicines from this prescription image. Format the output as a numbered list of medicine names only, without dosages or instructions."
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
inputs = processor(
|
| 39 |
-
text=[
|
| 40 |
-
images=
|
| 41 |
-
|
| 42 |
padding=True,
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
# Generate response
|
| 46 |
-
with torch.no_grad():
|
| 47 |
-
output = model.generate(**inputs, max_new_tokens=512)
|
| 48 |
|
| 49 |
-
#
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
|
| 54 |
-
response = response.split("<|assistant|>")[1].strip()
|
| 55 |
|
| 56 |
-
return
|
| 57 |
|
| 58 |
-
# Create
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
|
|
|
| 69 |
if __name__ == "__main__":
|
| 70 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 4 |
+
from qwen_vl_utils import process_vision_info
|
| 5 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# Load the model on CPU
|
| 8 |
+
def load_model():
|
| 9 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 10 |
+
"prithivMLmods/Qwen2-VL-OCR-2B-Instruct",
|
| 11 |
+
torch_dtype=torch.float32,
|
| 12 |
+
device_map="cpu"
|
| 13 |
+
)
|
| 14 |
+
processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen2-VL-OCR-2B-Instruct")
|
| 15 |
+
return model, processor
|
| 16 |
|
| 17 |
+
# Function to extract medicine names
|
| 18 |
+
def extract_medicine_names(image):
|
| 19 |
+
model, processor = load_model()
|
| 20 |
+
|
| 21 |
+
# Prepare the message with the specific prompt for medicine extraction
|
| 22 |
+
messages = [
|
| 23 |
+
{
|
| 24 |
+
"role": "user",
|
| 25 |
+
"content": [
|
| 26 |
+
{
|
| 27 |
+
"type": "image",
|
| 28 |
+
"image": image,
|
| 29 |
+
},
|
| 30 |
+
{"type": "text", "text": "Extract and list ONLY the names of medicines/drugs from this prescription image. Output the medicine names as a numbered list without any additional information or descriptions."},
|
| 31 |
+
],
|
| 32 |
+
}
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
# Prepare for inference
|
| 36 |
+
text = processor.apply_chat_template(
|
| 37 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 38 |
+
)
|
| 39 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 40 |
+
inputs = processor(
|
| 41 |
+
text=[text],
|
| 42 |
+
images=image_inputs,
|
| 43 |
+
videos=video_inputs,
|
| 44 |
+
padding=True,
|
| 45 |
+
return_tensors="pt",
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Generate output
|
| 49 |
+
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
| 50 |
+
generated_ids_trimmed = [
|
| 51 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 52 |
+
]
|
| 53 |
+
output_text = processor.batch_decode(
|
| 54 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 55 |
+
)[0]
|
| 56 |
+
|
| 57 |
+
# Remove <|im_end|> and any other special tokens that might appear in the output
|
| 58 |
+
output_text = output_text.replace("<|im_end|>", "").strip()
|
| 59 |
+
|
| 60 |
+
return output_text
|
| 61 |
+
|
| 62 |
+
# Create a singleton model and processor to avoid reloading for each request
|
| 63 |
+
model_instance = None
|
| 64 |
+
processor_instance = None
|
| 65 |
+
|
| 66 |
+
def get_model_and_processor():
|
| 67 |
+
global model_instance, processor_instance
|
| 68 |
+
if model_instance is None or processor_instance is None:
|
| 69 |
+
model_instance, processor_instance = load_model()
|
| 70 |
+
return model_instance, processor_instance
|
| 71 |
+
|
| 72 |
+
# Optimized extraction function that uses the singleton model
|
| 73 |
+
def extract_medicine_names_optimized(image):
|
| 74 |
if image is None:
|
| 75 |
+
return "Please upload an image."
|
| 76 |
|
| 77 |
+
model, processor = get_model_and_processor()
|
|
|
|
| 78 |
|
| 79 |
+
# Prepare the message with the specific prompt for medicine extraction
|
| 80 |
+
messages = [
|
| 81 |
+
{
|
| 82 |
+
"role": "user",
|
| 83 |
+
"content": [
|
| 84 |
+
{
|
| 85 |
+
"type": "image",
|
| 86 |
+
"image": image,
|
| 87 |
+
},
|
| 88 |
+
{"type": "text", "text": "Extract and list ONLY the names of medicines/drugs from this prescription image. Output the medicine names as a numbered list without any additional information or descriptions."},
|
| 89 |
+
],
|
| 90 |
+
}
|
| 91 |
+
]
|
| 92 |
|
| 93 |
+
# Prepare for inference
|
| 94 |
+
text = processor.apply_chat_template(
|
| 95 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 96 |
+
)
|
| 97 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 98 |
inputs = processor(
|
| 99 |
+
text=[text],
|
| 100 |
+
images=image_inputs,
|
| 101 |
+
videos=video_inputs,
|
| 102 |
padding=True,
|
| 103 |
+
return_tensors="pt",
|
| 104 |
+
)
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
# Generate output
|
| 107 |
+
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
| 108 |
+
generated_ids_trimmed = [
|
| 109 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 110 |
+
]
|
| 111 |
+
output_text = processor.batch_decode(
|
| 112 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 113 |
+
)[0]
|
| 114 |
|
| 115 |
+
# Remove <|im_end|> and any other special tokens that might appear in the output
|
| 116 |
+
output_text = output_text.replace("<|im_end|>", "").strip()
|
|
|
|
| 117 |
|
| 118 |
+
return output_text
|
| 119 |
|
| 120 |
+
# Create Gradio interface
|
| 121 |
+
with gr.Blocks(title="Medicine Name Extractor") as app:
|
| 122 |
+
gr.Markdown("# Medicine Name Extractor")
|
| 123 |
+
gr.Markdown("Upload a medical prescription image to extract the names of medicines.")
|
| 124 |
+
|
| 125 |
+
with gr.Row():
|
| 126 |
+
with gr.Column():
|
| 127 |
+
input_image = gr.Image(type="pil", label="Upload Prescription Image")
|
| 128 |
+
extract_btn = gr.Button("Extract Medicine Names", variant="primary")
|
| 129 |
+
|
| 130 |
+
with gr.Column():
|
| 131 |
+
output_text = gr.Textbox(label="Extracted Medicine Names", lines=10)
|
| 132 |
+
|
| 133 |
+
extract_btn.click(
|
| 134 |
+
fn=extract_medicine_names_optimized,
|
| 135 |
+
inputs=input_image,
|
| 136 |
+
outputs=output_text
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
gr.Markdown("### Notes")
|
| 140 |
+
gr.Markdown("- This tool uses the Qwen2-VL-OCR model to extract text from prescription images")
|
| 141 |
+
gr.Markdown("- For best results, ensure the prescription image is clear and readable")
|
| 142 |
+
gr.Markdown("- Processing may take some time as the model runs on CPU")
|
| 143 |
|
| 144 |
+
# Launch the app
|
| 145 |
if __name__ == "__main__":
|
| 146 |
+
app.launch()
|