Spaces:
Running
on
L4
Running
on
L4
| import spaces | |
| import gradio as gr | |
| from gradio_molecule3d import Molecule3D | |
| from gradio_cofoldinginput import CofoldingInput | |
| import os | |
| import re | |
| import urllib.request | |
| import yaml | |
| from msa import run_mmseqs2 | |
| CCD_URL = "https://huggingface.co/boltz-community/boltz-1/resolve/main/ccd.pkl" | |
| MODEL_URL = "https://huggingface.co/boltz-community/boltz-1/resolve/main/boltz1.ckpt" | |
| cache = "/home/user/.boltz" | |
| os.makedirs(cache) | |
| ccd = f"{cache}/ccd.pkl" | |
| if not os.path.exists(ccd): | |
| print( | |
| f"Downloading the CCD dictionary to {ccd}. You may " | |
| ) | |
| urllib.request.urlretrieve(CCD_URL, str(ccd)) | |
| # Download model | |
| model =f"{cache}/boltz1.ckpt" | |
| if not os.path.exists(model): | |
| print( | |
| f"Downloading the model weights to {model}" | |
| ) | |
| urllib.request.urlretrieve(MODEL_URL, str(model)) | |
| def predict(jobname, inputs, recycling_steps, sampling_steps, diffusion_samples): | |
| jobname = re.sub(r'[<>:"/\\|?*]', '_', jobname) | |
| if jobname == "": | |
| raise gr.Error("Job name empty or only invalid characters. Choose a plaintext name.") | |
| os.makedirs(jobname, exist_ok=True) | |
| """format Gradio Component: | |
| # {"chains": [ | |
| # { | |
| # "class": "DNA", | |
| # "sequence": "ATGCGT", | |
| # "chain": "A" | |
| # } | |
| # ], "covMods":[] | |
| # } | |
| """ | |
| sequences_for_msa = [] | |
| output = { | |
| "sequences": [] | |
| } | |
| representations = [] | |
| for chain in inputs["chains"]: | |
| entity_type = chain["class"].lower() | |
| sequence_data = { | |
| entity_type: { | |
| "id": chain["chain"], | |
| } | |
| } | |
| if entity_type in ["protein", "dna", "rna"]: | |
| sequence_data[entity_type]["sequence"] = chain["sequence"] | |
| if entity_type == "protein": | |
| sequences_for_msa.append(chain["sequence"]) | |
| sequence_data[entity_type]["msa"] = f"{jobname}/msa.a3m" | |
| representations.append({"model":0, "chain":chain["chain"], "style":"cartoon"}) | |
| if entity_type == "ligand": | |
| if "sdf" in chain.keys(): | |
| raise gr.Error("Sorry no SDF support yet") | |
| if "name" in chain.keys(): | |
| sequence_data[entity_type]["ccd"] = chain["name"] | |
| if "smiles" in chain.keys(): | |
| sequence_data[entity_type]["smiles"] = chain["smiles"] | |
| representations.append({"model":0, "chain":chain["chain"], "style":"stick", "color":"greenCarbon"}) | |
| if len(inputs["covMods"])>0: | |
| raise gr.Error("Sorry, covMods not supported yet. Coming soon. ") | |
| output["sequences"].append(sequence_data) | |
| # Convert the output to YAML | |
| yaml_file_path = f"{jobname}/{jobname}.yaml" | |
| # Write the YAML output to the file | |
| with open(yaml_file_path, "w") as file: | |
| yaml.dump(output, file, sort_keys=False, default_flow_style=False) | |
| os.system(f"cat {yaml_file_path}") | |
| a3m_lines_mmseqs2 = run_mmseqs2( | |
| sequences_for_msa, | |
| f"./{jobname}", | |
| use_templates=False, | |
| ) | |
| with open(f"{jobname}/msa.a3m", "w+") as fp: | |
| fp.writelines(a3m_lines_mmseqs2) | |
| os.system(f"boltz predict {jobname}/{jobname}.yaml --out_dir {jobname} --recycling_steps {recycling_steps} --sampling_steps {sampling_steps} --diffusion_samples {diffusion_samples} --override --output_format pdb") | |
| print(os.listdir(jobname)) | |
| print(os.listdir(f"{jobname}/boltz_results_{jobname}/predictions/{jobname}/")) | |
| return Molecule3D(f"{jobname}/boltz_results_{jobname}/predictions/{jobname}/{jobname}_model_0.pdb", label="Output", reps=representations) | |
| with gr.Blocks() as blocks: | |
| gr.Markdown("# Boltz-1") | |
| gr.Markdown("""Open GUI for running [Boltz-1 model](https://github.com/jwohlwend/boltz/) <br> | |
| Key components: | |
| - MMSeqs2 Webserver [Mirdita et al.](https://www.nature.com/articles/s41592-022-01488-1) | |
| - Boltz-1 Model [Wohlwend et al.](https://github.com/jwohlwend/boltz/) | |
| - Gradio Custom Components [Molecule3D](https://huggingface.co/spaces/simonduerr/gradio_molecule3d)/[Cofolding Input](https://huggingface.co/spaces/simonduerr/gradio_cofoldinginput) by myself | |
| - [3dmol.js Rego & Koes](https://academic.oup.com/bioinformatics/article/31/8/1322/213186) | |
| Note: This is an alpha: Some things like covalent modifications or using sdf files don't work yet. You can a Docker image of this on your local infrastructure easily using: | |
| `docker run -it -p 7860:7860 --platform=linux/amd64 --gpus all registry.hf.space/simonduerr-boltz-1:latest python app.py` | |
| """) | |
| with gr.Tab("Main"): | |
| jobname = gr.Textbox(label="Jobname") | |
| inp = CofoldingInput(label="Input") | |
| out = Molecule3D(label="Output") | |
| with gr.Tab("Settings"): | |
| recycling_steps =gr.Slider(value=3, minimum=0, label="Recycling steps") | |
| sampling_steps = gr.Slider(value=200, minimum=0, label="Sampling steps") | |
| diffusion_samples = gr.Slider(value=1, label="Diffusion samples") | |
| gr.Examples([ | |
| ["TOP7",{"chains": [{"class": "protein","sequence": "MGDIQVQVNIDDNGKNFDYTYTVTTESELQKVLNELMDYIKKQGAKRVRISITARTKKEAEKFAAILIKVFAELGYNDINVTFDGDTVTVEGQLEGGSLEHHHHHH","chain": "A"}], "covMods":[]}], | |
| ["ApixacabanBinder", {"chains": [{"class": "protein","sequence": "SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL","chain": "A"}, {"class":"ligand", "smiles":"COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O", "chain": "A"}], "covMods":[]}] | |
| ], | |
| inputs = [jobname, inp] | |
| ) | |
| btn = gr.Button("predict") | |
| btn.click(fn=predict, inputs=[jobname,inp, recycling_steps, sampling_steps, diffusion_samples], outputs=[out], api_name="predict") | |
| blocks.launch(ssr_mode=False) |