Spaces:
Runtime error
Runtime error
| import binascii | |
| import glob | |
| import hashlib | |
| import os | |
| import pickle | |
| from collections import defaultdict | |
| from multiprocessing import Pool | |
| import random | |
| import copy | |
| import numpy as np | |
| import torch | |
| from rdkit.Chem import MolToSmiles, MolFromSmiles, AddHs | |
| from torch_geometric.data import Dataset, HeteroData | |
| from torch_geometric.loader import DataLoader, DataListLoader | |
| from torch_geometric.transforms import BaseTransform | |
| from tqdm import tqdm | |
| from datasets.process_mols import read_molecule, get_rec_graph, generate_conformer, \ | |
| get_lig_graph_with_matching, extract_receptor_structure, parse_receptor, parse_pdb_from_path | |
| from utils.diffusion_utils import modify_conformer, set_time | |
| from utils.utils import read_strings_from_txt | |
| from utils import so3, torus | |
| class NoiseTransform(BaseTransform): | |
| def __init__(self, t_to_sigma, no_torsion, all_atom): | |
| self.t_to_sigma = t_to_sigma | |
| self.no_torsion = no_torsion | |
| self.all_atom = all_atom | |
| def __call__(self, data): | |
| t = np.random.uniform() | |
| t_tr, t_rot, t_tor = t, t, t | |
| return self.apply_noise(data, t_tr, t_rot, t_tor) | |
| def apply_noise(self, data, t_tr, t_rot, t_tor, tr_update = None, rot_update=None, torsion_updates=None): | |
| if not torch.is_tensor(data['ligand'].pos): | |
| data['ligand'].pos = random.choice(data['ligand'].pos) | |
| tr_sigma, rot_sigma, tor_sigma = self.t_to_sigma(t_tr, t_rot, t_tor) | |
| set_time(data, t_tr, t_rot, t_tor, 1, self.all_atom, device=None) | |
| tr_update = torch.normal(mean=0, std=tr_sigma, size=(1, 3)) if tr_update is None else tr_update | |
| rot_update = so3.sample_vec(eps=rot_sigma) if rot_update is None else rot_update | |
| torsion_updates = np.random.normal(loc=0.0, scale=tor_sigma, size=data['ligand'].edge_mask.sum()) if torsion_updates is None else torsion_updates | |
| torsion_updates = None if self.no_torsion else torsion_updates | |
| modify_conformer(data, tr_update, torch.from_numpy(rot_update).float(), torsion_updates) | |
| data.tr_score = -tr_update / tr_sigma ** 2 | |
| data.rot_score = torch.from_numpy(so3.score_vec(vec=rot_update, eps=rot_sigma)).float().unsqueeze(0) | |
| data.tor_score = None if self.no_torsion else torch.from_numpy(torus.score(torsion_updates, tor_sigma)).float() | |
| data.tor_sigma_edge = None if self.no_torsion else np.ones(data['ligand'].edge_mask.sum()) * tor_sigma | |
| return data | |
| class PDBBind(Dataset): | |
| def __init__(self, root, transform=None, cache_path='data/cache', split_path='data/', limit_complexes=0, | |
| receptor_radius=30, num_workers=1, c_alpha_max_neighbors=None, popsize=15, maxiter=15, | |
| matching=True, keep_original=False, max_lig_size=None, remove_hs=False, num_conformers=1, all_atoms=False, | |
| atom_radius=5, atom_max_neighbors=None, esm_embeddings_path=None, require_ligand=False, | |
| ligands_list=None, protein_path_list=None, ligand_descriptions=None, keep_local_structures=False): | |
| super(PDBBind, self).__init__(root, transform) | |
| self.pdbbind_dir = root | |
| self.max_lig_size = max_lig_size | |
| self.split_path = split_path | |
| self.limit_complexes = limit_complexes | |
| self.receptor_radius = receptor_radius | |
| self.num_workers = num_workers | |
| self.c_alpha_max_neighbors = c_alpha_max_neighbors | |
| self.remove_hs = remove_hs | |
| self.esm_embeddings_path = esm_embeddings_path | |
| self.require_ligand = require_ligand | |
| self.protein_path_list = protein_path_list | |
| self.ligand_descriptions = ligand_descriptions | |
| self.keep_local_structures = keep_local_structures | |
| if matching or protein_path_list is not None and ligand_descriptions is not None: | |
| cache_path += '_torsion' | |
| if all_atoms: | |
| cache_path += '_allatoms' | |
| self.full_cache_path = os.path.join(cache_path, f'limit{self.limit_complexes}' | |
| f'_INDEX{os.path.splitext(os.path.basename(self.split_path))[0]}' | |
| f'_maxLigSize{self.max_lig_size}_H{int(not self.remove_hs)}' | |
| f'_recRad{self.receptor_radius}_recMax{self.c_alpha_max_neighbors}' | |
| + ('' if not all_atoms else f'_atomRad{atom_radius}_atomMax{atom_max_neighbors}') | |
| + ('' if not matching or num_conformers == 1 else f'_confs{num_conformers}') | |
| + ('' if self.esm_embeddings_path is None else f'_esmEmbeddings') | |
| + ('' if not keep_local_structures else f'_keptLocalStruct') | |
| + ('' if protein_path_list is None or ligand_descriptions is None else str(binascii.crc32(''.join(ligand_descriptions + protein_path_list).encode())))) | |
| self.popsize, self.maxiter = popsize, maxiter | |
| self.matching, self.keep_original = matching, keep_original | |
| self.num_conformers = num_conformers | |
| self.all_atoms = all_atoms | |
| self.atom_radius, self.atom_max_neighbors = atom_radius, atom_max_neighbors | |
| if not os.path.exists(os.path.join(self.full_cache_path, "heterographs.pkl"))\ | |
| or (require_ligand and not os.path.exists(os.path.join(self.full_cache_path, "rdkit_ligands.pkl"))): | |
| os.makedirs(self.full_cache_path, exist_ok=True) | |
| if protein_path_list is None or ligand_descriptions is None: | |
| self.preprocessing() | |
| else: | |
| self.inference_preprocessing() | |
| print('loading data from memory: ', os.path.join(self.full_cache_path, "heterographs.pkl")) | |
| with open(os.path.join(self.full_cache_path, "heterographs.pkl"), 'rb') as f: | |
| self.complex_graphs = pickle.load(f) | |
| if require_ligand: | |
| with open(os.path.join(self.full_cache_path, "rdkit_ligands.pkl"), 'rb') as f: | |
| self.rdkit_ligands = pickle.load(f) | |
| print_statistics(self.complex_graphs) | |
| def len(self): | |
| return len(self.complex_graphs) | |
| def get(self, idx): | |
| if self.require_ligand: | |
| complex_graph = copy.deepcopy(self.complex_graphs[idx]) | |
| complex_graph.mol = copy.deepcopy(self.rdkit_ligands[idx]) | |
| return complex_graph | |
| else: | |
| return copy.deepcopy(self.complex_graphs[idx]) | |
| def preprocessing(self): | |
| print(f'Processing complexes from [{self.split_path}] and saving it to [{self.full_cache_path}]') | |
| complex_names_all = read_strings_from_txt(self.split_path) | |
| if self.limit_complexes is not None and self.limit_complexes != 0: | |
| complex_names_all = complex_names_all[:self.limit_complexes] | |
| print(f'Loading {len(complex_names_all)} complexes.') | |
| if self.esm_embeddings_path is not None: | |
| id_to_embeddings = torch.load(self.esm_embeddings_path) | |
| chain_embeddings_dictlist = defaultdict(list) | |
| for key, embedding in id_to_embeddings.items(): | |
| key_name = key.split('_')[0] | |
| if key_name in complex_names_all: | |
| chain_embeddings_dictlist[key_name].append(embedding) | |
| lm_embeddings_chains_all = [] | |
| for name in complex_names_all: | |
| lm_embeddings_chains_all.append(chain_embeddings_dictlist[name]) | |
| else: | |
| lm_embeddings_chains_all = [None] * len(complex_names_all) | |
| if self.num_workers > 1: | |
| # running preprocessing in parallel on multiple workers and saving the progress every 1000 complexes | |
| for i in range(len(complex_names_all)//1000+1): | |
| if os.path.exists(os.path.join(self.full_cache_path, f"heterographs{i}.pkl")): | |
| continue | |
| complex_names = complex_names_all[1000*i:1000*(i+1)] | |
| lm_embeddings_chains = lm_embeddings_chains_all[1000*i:1000*(i+1)] | |
| complex_graphs, rdkit_ligands = [], [] | |
| if self.num_workers > 1: | |
| p = Pool(self.num_workers, maxtasksperchild=1) | |
| p.__enter__() | |
| with tqdm(total=len(complex_names), desc=f'loading complexes {i}/{len(complex_names_all)//1000+1}') as pbar: | |
| map_fn = p.imap_unordered if self.num_workers > 1 else map | |
| for t in map_fn(self.get_complex, zip(complex_names, lm_embeddings_chains, [None] * len(complex_names), [None] * len(complex_names))): | |
| complex_graphs.extend(t[0]) | |
| rdkit_ligands.extend(t[1]) | |
| pbar.update() | |
| if self.num_workers > 1: p.__exit__(None, None, None) | |
| with open(os.path.join(self.full_cache_path, f"heterographs{i}.pkl"), 'wb') as f: | |
| pickle.dump((complex_graphs), f) | |
| with open(os.path.join(self.full_cache_path, f"rdkit_ligands{i}.pkl"), 'wb') as f: | |
| pickle.dump((rdkit_ligands), f) | |
| complex_graphs_all = [] | |
| for i in range(len(complex_names_all)//1000+1): | |
| with open(os.path.join(self.full_cache_path, f"heterographs{i}.pkl"), 'rb') as f: | |
| l = pickle.load(f) | |
| complex_graphs_all.extend(l) | |
| with open(os.path.join(self.full_cache_path, f"heterographs.pkl"), 'wb') as f: | |
| pickle.dump((complex_graphs_all), f) | |
| rdkit_ligands_all = [] | |
| for i in range(len(complex_names_all) // 1000 + 1): | |
| with open(os.path.join(self.full_cache_path, f"rdkit_ligands{i}.pkl"), 'rb') as f: | |
| l = pickle.load(f) | |
| rdkit_ligands_all.extend(l) | |
| with open(os.path.join(self.full_cache_path, f"rdkit_ligands.pkl"), 'wb') as f: | |
| pickle.dump((rdkit_ligands_all), f) | |
| else: | |
| complex_graphs, rdkit_ligands = [], [] | |
| with tqdm(total=len(complex_names_all), desc='loading complexes') as pbar: | |
| for t in map(self.get_complex, zip(complex_names_all, lm_embeddings_chains_all, [None] * len(complex_names_all), [None] * len(complex_names_all))): | |
| complex_graphs.extend(t[0]) | |
| rdkit_ligands.extend(t[1]) | |
| pbar.update() | |
| with open(os.path.join(self.full_cache_path, "heterographs.pkl"), 'wb') as f: | |
| pickle.dump((complex_graphs), f) | |
| with open(os.path.join(self.full_cache_path, "rdkit_ligands.pkl"), 'wb') as f: | |
| pickle.dump((rdkit_ligands), f) | |
| def inference_preprocessing(self): | |
| ligands_list = [] | |
| print('Reading molecules and generating local structures with RDKit') | |
| for ligand_description in tqdm(self.ligand_descriptions): | |
| mol = MolFromSmiles(ligand_description) # check if it is a smiles or a path | |
| if mol is not None: | |
| mol = AddHs(mol) | |
| generate_conformer(mol) | |
| ligands_list.append(mol) | |
| else: | |
| mol = read_molecule(ligand_description, remove_hs=False, sanitize=True) | |
| if not self.keep_local_structures: | |
| mol.RemoveAllConformers() | |
| mol = AddHs(mol) | |
| generate_conformer(mol) | |
| ligands_list.append(mol) | |
| if self.esm_embeddings_path is not None: | |
| print('Reading language model embeddings.') | |
| lm_embeddings_chains_all = [] | |
| if not os.path.exists(self.esm_embeddings_path): raise Exception('ESM embeddings path does not exist: ',self.esm_embeddings_path) | |
| for protein_path in self.protein_path_list: | |
| embeddings_paths = sorted(glob.glob(os.path.join(self.esm_embeddings_path, os.path.basename(protein_path)) + '*')) | |
| lm_embeddings_chains = [] | |
| for embeddings_path in embeddings_paths: | |
| lm_embeddings_chains.append(torch.load(embeddings_path)['representations'][33]) | |
| lm_embeddings_chains_all.append(lm_embeddings_chains) | |
| else: | |
| lm_embeddings_chains_all = [None] * len(self.protein_path_list) | |
| print('Generating graphs for ligands and proteins') | |
| if self.num_workers > 1: | |
| # running preprocessing in parallel on multiple workers and saving the progress every 1000 complexes | |
| for i in range(len(self.protein_path_list)//1000+1): | |
| if os.path.exists(os.path.join(self.full_cache_path, f"heterographs{i}.pkl")): | |
| continue | |
| protein_paths_chunk = self.protein_path_list[1000*i:1000*(i+1)] | |
| ligand_description_chunk = self.ligand_descriptions[1000*i:1000*(i+1)] | |
| ligands_chunk = ligands_list[1000 * i:1000 * (i + 1)] | |
| lm_embeddings_chains = lm_embeddings_chains_all[1000*i:1000*(i+1)] | |
| complex_graphs, rdkit_ligands = [], [] | |
| if self.num_workers > 1: | |
| p = Pool(self.num_workers, maxtasksperchild=1) | |
| p.__enter__() | |
| with tqdm(total=len(protein_paths_chunk), desc=f'loading complexes {i}/{len(protein_paths_chunk)//1000+1}') as pbar: | |
| map_fn = p.imap_unordered if self.num_workers > 1 else map | |
| for t in map_fn(self.get_complex, zip(protein_paths_chunk, lm_embeddings_chains, ligands_chunk,ligand_description_chunk)): | |
| complex_graphs.extend(t[0]) | |
| rdkit_ligands.extend(t[1]) | |
| pbar.update() | |
| if self.num_workers > 1: p.__exit__(None, None, None) | |
| with open(os.path.join(self.full_cache_path, f"heterographs{i}.pkl"), 'wb') as f: | |
| pickle.dump((complex_graphs), f) | |
| with open(os.path.join(self.full_cache_path, f"rdkit_ligands{i}.pkl"), 'wb') as f: | |
| pickle.dump((rdkit_ligands), f) | |
| complex_graphs_all = [] | |
| for i in range(len(self.protein_path_list)//1000+1): | |
| with open(os.path.join(self.full_cache_path, f"heterographs{i}.pkl"), 'rb') as f: | |
| l = pickle.load(f) | |
| complex_graphs_all.extend(l) | |
| with open(os.path.join(self.full_cache_path, f"heterographs.pkl"), 'wb') as f: | |
| pickle.dump((complex_graphs_all), f) | |
| rdkit_ligands_all = [] | |
| for i in range(len(self.protein_path_list) // 1000 + 1): | |
| with open(os.path.join(self.full_cache_path, f"rdkit_ligands{i}.pkl"), 'rb') as f: | |
| l = pickle.load(f) | |
| rdkit_ligands_all.extend(l) | |
| with open(os.path.join(self.full_cache_path, f"rdkit_ligands.pkl"), 'wb') as f: | |
| pickle.dump((rdkit_ligands_all), f) | |
| else: | |
| complex_graphs, rdkit_ligands = [], [] | |
| with tqdm(total=len(self.protein_path_list), desc='loading complexes') as pbar: | |
| for t in map(self.get_complex, zip(self.protein_path_list, lm_embeddings_chains_all, ligands_list, self.ligand_descriptions)): | |
| complex_graphs.extend(t[0]) | |
| rdkit_ligands.extend(t[1]) | |
| pbar.update() | |
| with open(os.path.join(self.full_cache_path, "heterographs.pkl"), 'wb') as f: | |
| pickle.dump((complex_graphs), f) | |
| with open(os.path.join(self.full_cache_path, "rdkit_ligands.pkl"), 'wb') as f: | |
| pickle.dump((rdkit_ligands), f) | |
| def get_complex(self, par): | |
| name, lm_embedding_chains, ligand, ligand_description = par | |
| if not os.path.exists(os.path.join(self.pdbbind_dir, name)) and ligand is None: | |
| print("Folder not found", name) | |
| return [], [] | |
| if ligand is not None: | |
| rec_model = parse_pdb_from_path(name) | |
| name = f'{name}____{ligand_description}' | |
| ligs = [ligand] | |
| else: | |
| try: | |
| rec_model = parse_receptor(name, self.pdbbind_dir) | |
| except Exception as e: | |
| print(f'Skipping {name} because of the error:') | |
| print(e) | |
| return [], [] | |
| ligs = read_mols(self.pdbbind_dir, name, remove_hs=False) | |
| complex_graphs = [] | |
| for i, lig in enumerate(ligs): | |
| if self.max_lig_size is not None and lig.GetNumHeavyAtoms() > self.max_lig_size: | |
| print(f'Ligand with {lig.GetNumHeavyAtoms()} heavy atoms is larger than max_lig_size {self.max_lig_size}. Not including {name} in preprocessed data.') | |
| continue | |
| complex_graph = HeteroData() | |
| complex_graph['name'] = name | |
| try: | |
| get_lig_graph_with_matching(lig, complex_graph, self.popsize, self.maxiter, self.matching, self.keep_original, | |
| self.num_conformers, remove_hs=self.remove_hs) | |
| rec, rec_coords, c_alpha_coords, n_coords, c_coords, lm_embeddings = extract_receptor_structure(copy.deepcopy(rec_model), lig, lm_embedding_chains=lm_embedding_chains) | |
| if lm_embeddings is not None and len(c_alpha_coords) != len(lm_embeddings): | |
| print(f'LM embeddings for complex {name} did not have the right length for the protein. Skipping {name}.') | |
| continue | |
| get_rec_graph(rec, rec_coords, c_alpha_coords, n_coords, c_coords, complex_graph, rec_radius=self.receptor_radius, | |
| c_alpha_max_neighbors=self.c_alpha_max_neighbors, all_atoms=self.all_atoms, | |
| atom_radius=self.atom_radius, atom_max_neighbors=self.atom_max_neighbors, remove_hs=self.remove_hs, lm_embeddings=lm_embeddings) | |
| except Exception as e: | |
| print(f'Skipping {name} because of the error:') | |
| print(e) | |
| raise e | |
| continue | |
| protein_center = torch.mean(complex_graph['receptor'].pos, dim=0, keepdim=True) | |
| complex_graph['receptor'].pos -= protein_center | |
| if self.all_atoms: | |
| complex_graph['atom'].pos -= protein_center | |
| if (not self.matching) or self.num_conformers == 1: | |
| complex_graph['ligand'].pos -= protein_center | |
| else: | |
| for p in complex_graph['ligand'].pos: | |
| p -= protein_center | |
| complex_graph.original_center = protein_center | |
| complex_graphs.append(complex_graph) | |
| return complex_graphs, ligs | |
| def print_statistics(complex_graphs): | |
| statistics = ([], [], [], []) | |
| for complex_graph in complex_graphs: | |
| lig_pos = complex_graph['ligand'].pos if torch.is_tensor(complex_graph['ligand'].pos) else complex_graph['ligand'].pos[0] | |
| radius_protein = torch.max(torch.linalg.vector_norm(complex_graph['receptor'].pos, dim=1)) | |
| molecule_center = torch.mean(lig_pos, dim=0) | |
| radius_molecule = torch.max( | |
| torch.linalg.vector_norm(lig_pos - molecule_center.unsqueeze(0), dim=1)) | |
| distance_center = torch.linalg.vector_norm(molecule_center) | |
| statistics[0].append(radius_protein) | |
| statistics[1].append(radius_molecule) | |
| statistics[2].append(distance_center) | |
| if "rmsd_matching" in complex_graph: | |
| statistics[3].append(complex_graph.rmsd_matching) | |
| else: | |
| statistics[3].append(0) | |
| name = ['radius protein', 'radius molecule', 'distance protein-mol', 'rmsd matching'] | |
| print('Number of complexes: ', len(complex_graphs)) | |
| for i in range(4): | |
| array = np.asarray(statistics[i]) | |
| print(f"{name[i]}: mean {np.mean(array)}, std {np.std(array)}, max {np.max(array)}") | |
| def construct_loader(args, t_to_sigma): | |
| transform = NoiseTransform(t_to_sigma=t_to_sigma, no_torsion=args.no_torsion, | |
| all_atom=args.all_atoms) | |
| common_args = {'transform': transform, 'root': args.data_dir, 'limit_complexes': args.limit_complexes, | |
| 'receptor_radius': args.receptor_radius, | |
| 'c_alpha_max_neighbors': args.c_alpha_max_neighbors, | |
| 'remove_hs': args.remove_hs, 'max_lig_size': args.max_lig_size, | |
| 'matching': not args.no_torsion, 'popsize': args.matching_popsize, 'maxiter': args.matching_maxiter, | |
| 'num_workers': args.num_workers, 'all_atoms': args.all_atoms, | |
| 'atom_radius': args.atom_radius, 'atom_max_neighbors': args.atom_max_neighbors, | |
| 'esm_embeddings_path': args.esm_embeddings_path} | |
| train_dataset = PDBBind(cache_path=args.cache_path, split_path=args.split_train, keep_original=True, | |
| num_conformers=args.num_conformers, **common_args) | |
| val_dataset = PDBBind(cache_path=args.cache_path, split_path=args.split_val, keep_original=True, **common_args) | |
| loader_class = DataListLoader if torch.cuda.is_available() else DataLoader | |
| train_loader = loader_class(dataset=train_dataset, batch_size=args.batch_size, num_workers=args.num_dataloader_workers, shuffle=True, pin_memory=args.pin_memory) | |
| val_loader = loader_class(dataset=val_dataset, batch_size=args.batch_size, num_workers=args.num_dataloader_workers, shuffle=True, pin_memory=args.pin_memory) | |
| return train_loader, val_loader | |
| def read_mol(pdbbind_dir, name, remove_hs=False): | |
| lig = read_molecule(os.path.join(pdbbind_dir, name, f'{name}_ligand.sdf'), remove_hs=remove_hs, sanitize=True) | |
| if lig is None: # read mol2 file if sdf file cannot be sanitized | |
| lig = read_molecule(os.path.join(pdbbind_dir, name, f'{name}_ligand.mol2'), remove_hs=remove_hs, sanitize=True) | |
| return lig | |
| def read_mols(pdbbind_dir, name, remove_hs=False): | |
| ligs = [] | |
| for file in os.listdir(os.path.join(pdbbind_dir, name)): | |
| if file.endswith(".sdf") and 'rdkit' not in file: | |
| lig = read_molecule(os.path.join(pdbbind_dir, name, file), remove_hs=remove_hs, sanitize=True) | |
| if lig is None and os.path.exists(os.path.join(pdbbind_dir, name, file[:-4] + ".mol2")): # read mol2 file if sdf file cannot be sanitized | |
| print('Using the .sdf file failed. We found a .mol2 file instead and are trying to use that.') | |
| lig = read_molecule(os.path.join(pdbbind_dir, name, file[:-4] + ".mol2"), remove_hs=remove_hs, sanitize=True) | |
| if lig is not None: | |
| ligs.append(lig) | |
| return ligs |