Spaces:
Runtime error
Runtime error
| import math | |
| import torch | |
| def quaternion_to_matrix(quaternions): | |
| """ | |
| From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html | |
| Convert rotations given as quaternions to rotation matrices. | |
| Args: | |
| quaternions: quaternions with real part first, | |
| as tensor of shape (..., 4). | |
| Returns: | |
| Rotation matrices as tensor of shape (..., 3, 3). | |
| """ | |
| r, i, j, k = torch.unbind(quaternions, -1) | |
| two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
| o = torch.stack( | |
| ( | |
| 1 - two_s * (j * j + k * k), | |
| two_s * (i * j - k * r), | |
| two_s * (i * k + j * r), | |
| two_s * (i * j + k * r), | |
| 1 - two_s * (i * i + k * k), | |
| two_s * (j * k - i * r), | |
| two_s * (i * k - j * r), | |
| two_s * (j * k + i * r), | |
| 1 - two_s * (i * i + j * j), | |
| ), | |
| -1, | |
| ) | |
| return o.reshape(quaternions.shape[:-1] + (3, 3)) | |
| def axis_angle_to_quaternion(axis_angle): | |
| """ | |
| From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html | |
| Convert rotations given as axis/angle to quaternions. | |
| Args: | |
| axis_angle: Rotations given as a vector in axis angle form, | |
| as a tensor of shape (..., 3), where the magnitude is | |
| the angle turned anticlockwise in radians around the | |
| vector's direction. | |
| Returns: | |
| quaternions with real part first, as tensor of shape (..., 4). | |
| """ | |
| angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) | |
| half_angles = 0.5 * angles | |
| eps = 1e-6 | |
| small_angles = angles.abs() < eps | |
| sin_half_angles_over_angles = torch.empty_like(angles) | |
| sin_half_angles_over_angles[~small_angles] = ( | |
| torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
| ) | |
| # for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
| # so sin(x/2)/x is about 1/2 - (x*x)/48 | |
| sin_half_angles_over_angles[small_angles] = ( | |
| 0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
| ) | |
| quaternions = torch.cat( | |
| [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 | |
| ) | |
| return quaternions | |
| def axis_angle_to_matrix(axis_angle): | |
| """ | |
| From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html | |
| Convert rotations given as axis/angle to rotation matrices. | |
| Args: | |
| axis_angle: Rotations given as a vector in axis angle form, | |
| as a tensor of shape (..., 3), where the magnitude is | |
| the angle turned anticlockwise in radians around the | |
| vector's direction. | |
| Returns: | |
| Rotation matrices as tensor of shape (..., 3, 3). | |
| """ | |
| return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) | |
| def rigid_transform_Kabsch_3D_torch(A, B): | |
| # R = 3x3 rotation matrix, t = 3x1 column vector | |
| # This already takes residue identity into account. | |
| assert A.shape[1] == B.shape[1] | |
| num_rows, num_cols = A.shape | |
| if num_rows != 3: | |
| raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}") | |
| num_rows, num_cols = B.shape | |
| if num_rows != 3: | |
| raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}") | |
| # find mean column wise: 3 x 1 | |
| centroid_A = torch.mean(A, axis=1, keepdims=True) | |
| centroid_B = torch.mean(B, axis=1, keepdims=True) | |
| # subtract mean | |
| Am = A - centroid_A | |
| Bm = B - centroid_B | |
| H = Am @ Bm.T | |
| # find rotation | |
| U, S, Vt = torch.linalg.svd(H) | |
| R = Vt.T @ U.T | |
| # special reflection case | |
| if torch.linalg.det(R) < 0: | |
| # print("det(R) < R, reflection detected!, correcting for it ...") | |
| SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device)) | |
| R = (Vt.T @ SS) @ U.T | |
| assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 # note I had to change this error bound to be higher | |
| t = -R @ centroid_A + centroid_B | |
| return R, t | |