Spaces:
Runtime error
Runtime error
| # This file needs to be ran in the TANKBind repository together with baseline_run_tankbind_parallel.sh | |
| import sys | |
| import time | |
| from multiprocessing import Pool | |
| import copy | |
| import warnings | |
| from argparse import ArgumentParser | |
| from rdkit.Chem import AllChem, RemoveHs | |
| from feature_utils import save_cleaned_protein, read_mol | |
| from generation_utils import get_LAS_distance_constraint_mask, get_info_pred_distance, write_with_new_coords | |
| import logging | |
| from torch_geometric.loader import DataLoader | |
| from tqdm import tqdm # pip install tqdm if fails. | |
| from model import get_model | |
| # from utils import * | |
| import torch | |
| from data import TankBind_prediction | |
| import os | |
| import numpy as np | |
| import pandas as pd | |
| import rdkit.Chem as Chem | |
| from feature_utils import generate_sdf_from_smiles_using_rdkit | |
| from feature_utils import get_protein_feature | |
| from Bio.PDB import PDBParser | |
| from feature_utils import extract_torchdrug_feature_from_mol | |
| def read_strings_from_txt(path): | |
| # every line will be one element of the returned list | |
| with open(path) as file: | |
| lines = file.readlines() | |
| return [line.rstrip() for line in lines] | |
| def read_molecule(molecule_file, sanitize=False, calc_charges=False, remove_hs=False): | |
| if molecule_file.endswith('.mol2'): | |
| mol = Chem.MolFromMol2File(molecule_file, sanitize=False, removeHs=False) | |
| elif molecule_file.endswith('.sdf'): | |
| supplier = Chem.SDMolSupplier(molecule_file, sanitize=False, removeHs=False) | |
| mol = supplier[0] | |
| elif molecule_file.endswith('.pdbqt'): | |
| with open(molecule_file) as file: | |
| pdbqt_data = file.readlines() | |
| pdb_block = '' | |
| for line in pdbqt_data: | |
| pdb_block += '{}\n'.format(line[:66]) | |
| mol = Chem.MolFromPDBBlock(pdb_block, sanitize=False, removeHs=False) | |
| elif molecule_file.endswith('.pdb'): | |
| mol = Chem.MolFromPDBFile(molecule_file, sanitize=False, removeHs=False) | |
| else: | |
| return ValueError('Expect the format of the molecule_file to be ' | |
| 'one of .mol2, .sdf, .pdbqt and .pdb, got {}'.format(molecule_file)) | |
| try: | |
| if sanitize or calc_charges: | |
| Chem.SanitizeMol(mol) | |
| if calc_charges: | |
| # Compute Gasteiger charges on the molecule. | |
| try: | |
| AllChem.ComputeGasteigerCharges(mol) | |
| except: | |
| warnings.warn('Unable to compute charges for the molecule.') | |
| if remove_hs: | |
| mol = Chem.RemoveHs(mol, sanitize=sanitize) | |
| except: | |
| return None | |
| return mol | |
| def parallel_save_prediction(arguments): | |
| dataset, y_pred_list, chosen,rdkit_mol_path, result_folder, name = arguments | |
| for idx, line in chosen.iterrows(): | |
| pocket_name = line['pocket_name'] | |
| compound_name = line['compound_name'] | |
| ligandName = compound_name.split("_")[1] | |
| dataset_index = line['dataset_index'] | |
| coords = dataset[dataset_index].coords.to('cpu') | |
| protein_nodes_xyz = dataset[dataset_index].node_xyz.to('cpu') | |
| n_compound = coords.shape[0] | |
| n_protein = protein_nodes_xyz.shape[0] | |
| y_pred = y_pred_list[dataset_index].reshape(n_protein, n_compound).to('cpu') | |
| compound_pair_dis_constraint = torch.cdist(coords, coords) | |
| mol = Chem.MolFromMolFile(rdkit_mol_path) | |
| LAS_distance_constraint_mask = get_LAS_distance_constraint_mask(mol).bool() | |
| pred_dist_info = get_info_pred_distance(coords, y_pred, protein_nodes_xyz, compound_pair_dis_constraint, | |
| LAS_distance_constraint_mask=LAS_distance_constraint_mask, | |
| n_repeat=1, show_progress=False) | |
| toFile = f'{result_folder}/{name}_tankbind_chosen.sdf' | |
| new_coords = pred_dist_info.sort_values("loss")['coords'].iloc[0].astype(np.double) | |
| write_with_new_coords(mol, new_coords, toFile) | |
| if __name__ == '__main__': | |
| tankbind_src_folder = "../tankbind" | |
| sys.path.insert(0, tankbind_src_folder) | |
| torch.set_num_threads(16) | |
| parser = ArgumentParser() | |
| parser.add_argument('--data_dir', type=str, default='/Users/hstark/projects/ligbind/data/PDBBind_processed', help='') | |
| parser.add_argument('--split_path', type=str, default='/Users/hstark/projects/ligbind/data/splits/timesplit_test', help='') | |
| parser.add_argument('--prank_path', type=str, default='/Users/hstark/projects/p2rank_2.3/prank', help='') | |
| parser.add_argument('--results_path', type=str, default='results/tankbind_results', help='') | |
| parser.add_argument('--skip_existing', action='store_true', default=False, help='') | |
| parser.add_argument('--skip_p2rank', action='store_true', default=False, help='') | |
| parser.add_argument('--skip_multiple_pocket_outputs', action='store_true', default=False, help='') | |
| parser.add_argument('--device', type=str, default='cpu', help='') | |
| parser.add_argument('--num_workers', type=int, default=1, help='') | |
| parser.add_argument('--parallel_id', type=int, default=0, help='') | |
| parser.add_argument('--parallel_tot', type=int, default=1, help='') | |
| args = parser.parse_args() | |
| device = args.device | |
| cache_path = "tankbind_cache" | |
| os.makedirs(cache_path, exist_ok=True) | |
| os.makedirs(args.results_path, exist_ok=True) | |
| logging.basicConfig(level=logging.INFO) | |
| model = get_model(0, logging, device) | |
| # re-dock model | |
| # modelFile = "../saved_models/re_dock.pt" | |
| # self-dock model | |
| modelFile = f"{tankbind_src_folder}/../saved_models/self_dock.pt" | |
| model.load_state_dict(torch.load(modelFile, map_location=device)) | |
| _ = model.eval() | |
| batch_size = 5 | |
| names = read_strings_from_txt(args.split_path) | |
| if args.parallel_tot > 1: | |
| size = len(names) // args.parallel_tot + 1 | |
| names = names[args.parallel_id*size:(args.parallel_id+1)*size] | |
| rmsds = [] | |
| forward_pass_time = [] | |
| times_preprocess = [] | |
| times_inference = [] | |
| top_10_generation_time = [] | |
| top_1_generation_time = [] | |
| start_time = time.time() | |
| if not args.skip_p2rank: | |
| for name in names: | |
| if args.skip_existing and os.path.exists(f'{args.results_path}/{name}/{name}_tankbind_1.sdf'): continue | |
| print("Now processing: ", name) | |
| protein_path = f'{args.data_dir}/{name}/{name}_protein_processed.pdb' | |
| cleaned_protein_path = f"{cache_path}/{name}_protein_tankbind_cleaned.pdb" # if you change this you also need to change below | |
| parser = PDBParser(QUIET=True) | |
| s = parser.get_structure(name, protein_path) | |
| c = s[0] | |
| clean_res_list, ligand_list = save_cleaned_protein(c, cleaned_protein_path) | |
| with open(f"{cache_path}/pdb_list_p2rank.txt", "w") as out: | |
| for name in names: | |
| out.write(f"{name}_protein_tankbind_cleaned.pdb\n") | |
| cmd = f"bash {args.prank_path} predict {cache_path}/pdb_list_p2rank.txt -o {cache_path}/p2rank -threads 4" | |
| os.system(cmd) | |
| times_preprocess.append(time.time() - start_time) | |
| p2_rank_time = time.time() - start_time | |
| list_to_parallelize = [] | |
| for name in tqdm(names): | |
| single_preprocess_time = time.time() | |
| if args.skip_existing and os.path.exists(f'{args.results_path}/{name}/{name}_tankbind_1.sdf'): continue | |
| print("Now processing: ", name) | |
| protein_path = f'{args.data_dir}/{name}/{name}_protein_processed.pdb' | |
| ligand_path = f"{args.data_dir}/{name}/{name}_ligand.sdf" | |
| cleaned_protein_path = f"{cache_path}/{name}_protein_tankbind_cleaned.pdb" # if you change this you also need to change below | |
| rdkit_mol_path = f"{cache_path}/{name}_rdkit_ligand.sdf" | |
| parser = PDBParser(QUIET=True) | |
| s = parser.get_structure(name, protein_path) | |
| c = s[0] | |
| clean_res_list, ligand_list = save_cleaned_protein(c, cleaned_protein_path) | |
| lig, _ = read_mol(f"{args.data_dir}/{name}/{name}_ligand.sdf", f"{args.data_dir}/{name}/{name}_ligand.mol2") | |
| lig = RemoveHs(lig) | |
| smiles = Chem.MolToSmiles(lig) | |
| generate_sdf_from_smiles_using_rdkit(smiles, rdkit_mol_path, shift_dis=0) | |
| parser = PDBParser(QUIET=True) | |
| s = parser.get_structure("x", cleaned_protein_path) | |
| res_list = list(s.get_residues()) | |
| protein_dict = {} | |
| protein_dict[name] = get_protein_feature(res_list) | |
| compound_dict = {} | |
| mol = Chem.MolFromMolFile(rdkit_mol_path) | |
| compound_dict[name + f"_{name}" + "_rdkit"] = extract_torchdrug_feature_from_mol(mol, has_LAS_mask=True) | |
| info = [] | |
| for compound_name in list(compound_dict.keys()): | |
| # use protein center as the block center. | |
| com = ",".join([str(a.round(3)) for a in protein_dict[name][0].mean(axis=0).numpy()]) | |
| info.append([name, compound_name, "protein_center", com]) | |
| p2rankFile = f"{cache_path}/p2rank/{name}_protein_tankbind_cleaned.pdb_predictions.csv" | |
| pocket = pd.read_csv(p2rankFile) | |
| pocket.columns = pocket.columns.str.strip() | |
| pocket_coms = pocket[['center_x', 'center_y', 'center_z']].values | |
| for ith_pocket, com in enumerate(pocket_coms): | |
| com = ",".join([str(a.round(3)) for a in com]) | |
| info.append([name, compound_name, f"pocket_{ith_pocket + 1}", com]) | |
| info = pd.DataFrame(info, columns=['protein_name', 'compound_name', 'pocket_name', 'pocket_com']) | |
| dataset_path = f"{cache_path}/{name}_dataset/" | |
| os.system(f"rm -r {dataset_path}") | |
| os.system(f"mkdir -p {dataset_path}") | |
| dataset = TankBind_prediction(dataset_path, data=info, protein_dict=protein_dict, compound_dict=compound_dict) | |
| # dataset = TankBind_prediction(dataset_path) | |
| times_preprocess.append(time.time() - single_preprocess_time) | |
| single_forward_pass_time = time.time() | |
| data_loader = DataLoader(dataset, batch_size=batch_size, follow_batch=['x', 'y', 'compound_pair'], shuffle=False, | |
| num_workers=0) | |
| affinity_pred_list = [] | |
| y_pred_list = [] | |
| for data in tqdm(data_loader): | |
| data = data.to(device) | |
| y_pred, affinity_pred = model(data) | |
| affinity_pred_list.append(affinity_pred.detach().cpu()) | |
| for i in range(data.y_batch.max() + 1): | |
| y_pred_list.append((y_pred[data['y_batch'] == i]).detach().cpu()) | |
| affinity_pred_list = torch.cat(affinity_pred_list) | |
| forward_pass_time.append(time.time() - single_forward_pass_time) | |
| output_info = copy.deepcopy(dataset.data) | |
| output_info['affinity'] = affinity_pred_list | |
| output_info['dataset_index'] = range(len(output_info)) | |
| output_info_sorted = output_info.sort_values('affinity', ascending=False) | |
| result_folder = f'{args.results_path}/{name}' | |
| os.makedirs(result_folder, exist_ok=True) | |
| output_info_sorted.to_csv(f"{result_folder}/output_info_sorted_by_affinity.csv") | |
| if not args.skip_multiple_pocket_outputs: | |
| for idx, (dataframe_idx, line) in enumerate(copy.deepcopy(output_info_sorted).iterrows()): | |
| single_top10_generation_time = time.time() | |
| pocket_name = line['pocket_name'] | |
| compound_name = line['compound_name'] | |
| ligandName = compound_name.split("_")[1] | |
| coords = dataset[dataframe_idx].coords.to('cpu') | |
| protein_nodes_xyz = dataset[dataframe_idx].node_xyz.to('cpu') | |
| n_compound = coords.shape[0] | |
| n_protein = protein_nodes_xyz.shape[0] | |
| y_pred = y_pred_list[dataframe_idx].reshape(n_protein, n_compound).to('cpu') | |
| y = dataset[dataframe_idx].dis_map.reshape(n_protein, n_compound).to('cpu') | |
| compound_pair_dis_constraint = torch.cdist(coords, coords) | |
| mol = Chem.MolFromMolFile(rdkit_mol_path) | |
| LAS_distance_constraint_mask = get_LAS_distance_constraint_mask(mol).bool() | |
| pred_dist_info = get_info_pred_distance(coords, y_pred, protein_nodes_xyz, compound_pair_dis_constraint, | |
| LAS_distance_constraint_mask=LAS_distance_constraint_mask, | |
| n_repeat=1, show_progress=False) | |
| toFile = f'{result_folder}/{name}_tankbind_{idx}.sdf' | |
| new_coords = pred_dist_info.sort_values("loss")['coords'].iloc[0].astype(np.double) | |
| write_with_new_coords(mol, new_coords, toFile) | |
| if idx < 10: | |
| top_10_generation_time.append(time.time() - single_top10_generation_time) | |
| if idx == 0: | |
| top_1_generation_time.append(time.time() - single_top10_generation_time) | |
| output_info_chosen = copy.deepcopy(dataset.data) | |
| output_info_chosen['affinity'] = affinity_pred_list | |
| output_info_chosen['dataset_index'] = range(len(output_info_chosen)) | |
| chosen = output_info_chosen.loc[ | |
| output_info_chosen.groupby(['protein_name', 'compound_name'], sort=False)['affinity'].agg( | |
| 'idxmax')].reset_index() | |
| list_to_parallelize.append((dataset, y_pred_list, chosen, rdkit_mol_path, result_folder, name)) | |
| chosen_generation_start_time = time.time() | |
| if args.num_workers > 1: | |
| p = Pool(args.num_workers, maxtasksperchild=1) | |
| p.__enter__() | |
| with tqdm(total=len(list_to_parallelize), desc=f'running optimization {i}/{len(list_to_parallelize)}') as pbar: | |
| map_fn = p.imap_unordered if args.num_workers > 1 else map | |
| for t in map_fn(parallel_save_prediction, list_to_parallelize): | |
| pbar.update() | |
| if args.num_workers > 1: p.__exit__(None, None, None) | |
| chosen_generation_time = time.time() - chosen_generation_start_time | |
| """ | |
| lig, _ = read_mol(f"{args.data_dir}/{name}/{name}_ligand.sdf", f"{args.data_dir}/{name}/{name}_ligand.mol2") | |
| sm = Chem.MolToSmiles(lig) | |
| m_order = list(lig.GetPropsAsDict(includePrivate=True, includeComputed=True)['_smilesAtomOutputOrder']) | |
| lig = Chem.RenumberAtoms(lig, m_order) | |
| lig = Chem.RemoveAllHs(lig) | |
| lig = RemoveHs(lig) | |
| true_ligand_pos = np.array(lig.GetConformer().GetPositions()) | |
| toFile = f'{result_folder}/{name}_tankbind_chosen.sdf' | |
| mol_pred, _ = read_mol(toFile, None) | |
| sm = Chem.MolToSmiles(mol_pred) | |
| m_order = list(mol_pred.GetPropsAsDict(includePrivate=True, includeComputed=True)['_smilesAtomOutputOrder']) | |
| mol_pred = Chem.RenumberAtoms(mol_pred, m_order) | |
| mol_pred = RemoveHs(mol_pred) | |
| mol_pred_pos = np.array(mol_pred.GetConformer().GetPositions()) | |
| rmsds.append(np.sqrt(((true_ligand_pos - mol_pred_pos) ** 2).sum(axis=1).mean(axis=0))) | |
| print(np.sqrt(((true_ligand_pos - mol_pred_pos) ** 2).sum(axis=1).mean(axis=0))) | |
| """ | |
| forward_pass_time = np.array(forward_pass_time).sum() | |
| times_preprocess = np.array(times_preprocess).sum() | |
| times_inference = np.array(times_inference).sum() | |
| top_10_generation_time = np.array(top_10_generation_time).sum() | |
| top_1_generation_time = np.array(top_1_generation_time).sum() | |
| rmsds = np.array(rmsds) | |
| print(f'forward_pass_time: {forward_pass_time}') | |
| print(f'times_preprocess: {times_preprocess}') | |
| print(f'times_inference: {times_inference}') | |
| print(f'top_10_generation_time: {top_10_generation_time}') | |
| print(f'top_1_generation_time: {top_1_generation_time}') | |
| print(f'chosen_generation_time: {chosen_generation_time}') | |
| print(f'rmsds_below_2: {(100 * (rmsds < 2).sum() / len(rmsds))}') | |
| print(f'p2rank Time: {p2_rank_time}') | |
| print( | |
| f'total_time: ' | |
| f'{forward_pass_time + times_preprocess + times_inference + top_10_generation_time + top_1_generation_time + p2_rank_time}') | |
| with open(os.path.join(args.results_path, 'tankbind_log.log'), 'w') as file: | |
| file.write(f'forward_pass_time: {forward_pass_time}') | |
| file.write(f'times_preprocess: {times_preprocess}') | |
| file.write(f'times_inference: {times_inference}') | |
| file.write(f'top_10_generation_time: {top_10_generation_time}') | |
| file.write(f'top_1_generation_time: {top_1_generation_time}') | |
| file.write(f'rmsds_below_2: {(100 * (rmsds < 2).sum() / len(rmsds))}') | |
| file.write(f'p2rank Time: {p2_rank_time}') | |
| file.write(f'total_time: {forward_pass_time + times_preprocess + times_inference + top_10_generation_time + top_1_generation_time + p2_rank_time}') | |