Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pinecone
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
import requests
|
| 4 |
+
from transformers import BertTokenizerFast
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
import transformers.models.clip.image_processing_clip
|
| 7 |
+
import torch
|
| 8 |
+
import gradio as gr
|
| 9 |
+
from deep_translator import GoogleTranslator
|
| 10 |
+
import shutil
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import os
|
| 13 |
+
|
| 14 |
+
with open('pinecone_text.py' ,'w') as fb:
|
| 15 |
+
fb.write(requests.get('https://storage.googleapis.com/gareth-pinecone-datasets/pinecone_text.py').text)
|
| 16 |
+
import pinecone_text
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# init connection to pinecone
|
| 20 |
+
pinecone.init(
|
| 21 |
+
api_key="0898750a-ee05-44f1-ac8a-98c5fef92f4a", # app.pinecone.io
|
| 22 |
+
environment="asia-southeast1-gcp-free" # find next to api key
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
index_name = "hybrid-image-search"
|
| 26 |
+
index = pinecone.GRPCIndex(index_name)
|
| 27 |
+
|
| 28 |
+
# load the dataset from huggingface datasets hub
|
| 29 |
+
fashion = load_dataset(
|
| 30 |
+
"ashraq/fashion-product-images-small",
|
| 31 |
+
split='train[:1000]'
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
images = fashion["image"]
|
| 35 |
+
metadata = fashion.remove_columns("image")
|
| 36 |
+
|
| 37 |
+
# load bert tokenizer from huggingface
|
| 38 |
+
tokenizer = BertTokenizerFast.from_pretrained(
|
| 39 |
+
'bert-base-uncased'
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
def tokenize_func(text):
|
| 43 |
+
token_ids = tokenizer(
|
| 44 |
+
text,
|
| 45 |
+
add_special_tokens=False
|
| 46 |
+
)['input_ids']
|
| 47 |
+
return tokenizer.convert_ids_to_tokens(token_ids)
|
| 48 |
+
|
| 49 |
+
bm25 = pinecone_text.BM25(tokenize_func)
|
| 50 |
+
bm25.fit(metadata['productDisplayName'])
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 54 |
+
|
| 55 |
+
# load a CLIP model from huggingface
|
| 56 |
+
model = SentenceTransformer(
|
| 57 |
+
'sentence-transformers/clip-ViT-B-32',
|
| 58 |
+
device=device
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def hybrid_scale(dense, sparse, alpha: float):
|
| 63 |
+
if alpha < 0 or alpha > 1:
|
| 64 |
+
raise ValueError("Alpha must be between 0 and 1")
|
| 65 |
+
# scale sparse and dense vectors to create hybrid search vecs
|
| 66 |
+
hsparse = {
|
| 67 |
+
'indices': sparse['indices'],
|
| 68 |
+
'values': [v * (1 - alpha) for v in sparse['values']]
|
| 69 |
+
}
|
| 70 |
+
hdense = [v * alpha for v in dense]
|
| 71 |
+
return hdense, hsparse
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def text_to_image(query, alpha, k_results):
|
| 75 |
+
sparse = bm25.transform_query(query)
|
| 76 |
+
dense = model.encode(query).tolist()
|
| 77 |
+
|
| 78 |
+
# scale sparse and dense vectors
|
| 79 |
+
hdense, hsparse = hybrid_scale(dense, sparse, alpha=alpha)
|
| 80 |
+
|
| 81 |
+
# search
|
| 82 |
+
result = index.query(
|
| 83 |
+
top_k=k_results,
|
| 84 |
+
vector=hdense,
|
| 85 |
+
sparse_vector=hsparse,
|
| 86 |
+
include_metadata=True
|
| 87 |
+
)
|
| 88 |
+
# used returned product ids to get images
|
| 89 |
+
imgs = [images[int(r["id"])] for r in result["matches"]]
|
| 90 |
+
|
| 91 |
+
description = []
|
| 92 |
+
for x in result["matches"]:
|
| 93 |
+
description.append( x["metadata"]['productDisplayName'] )
|
| 94 |
+
|
| 95 |
+
return imgs, description
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def img_to_file_list(imgs):
|
| 99 |
+
path = "searches"
|
| 100 |
+
sub_path = './' + path + '/' + 'search' + '_' + str(counter["dir_num"])
|
| 101 |
+
|
| 102 |
+
# Check whether the specified path exists or not
|
| 103 |
+
isExist = os.path.exists('.'+'/'+path)
|
| 104 |
+
|
| 105 |
+
if not isExist:
|
| 106 |
+
print("Directory does not exists")
|
| 107 |
+
# Create a new directory because it does not exist
|
| 108 |
+
os.makedirs('.'+'/'+path, exist_ok = True)
|
| 109 |
+
print("The new directory is created!")
|
| 110 |
+
|
| 111 |
+
# Check whether the specified path exists or not
|
| 112 |
+
isExist = os.path.exists(sub_path)
|
| 113 |
+
|
| 114 |
+
if isExist:
|
| 115 |
+
shutil.rmtree(sub_path)
|
| 116 |
+
|
| 117 |
+
os.makedirs(sub_path, exist_ok = True)
|
| 118 |
+
|
| 119 |
+
img_files = {'search'+str(counter["dir_num"]):[]}
|
| 120 |
+
i = 0
|
| 121 |
+
|
| 122 |
+
for img in imgs:
|
| 123 |
+
img.save(sub_path+"/img_" + str(i) + ".png","PNG")
|
| 124 |
+
img_files['search'+str(counter["dir_num"])].append(sub_path + '/' + 'img_'+ str(i) + ".png")
|
| 125 |
+
i+=1
|
| 126 |
+
|
| 127 |
+
counter["dir_num"]+=1
|
| 128 |
+
|
| 129 |
+
return img_files['search'+str(counter["dir_num"]-1)]
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def hybrid_scale(dense, sparse, alpha: float):
|
| 134 |
+
if alpha < 0 or alpha > 1:
|
| 135 |
+
raise ValueError("Alpha must be between 0 and 1")
|
| 136 |
+
# scale sparse and dense vectors to create hybrid search vecs
|
| 137 |
+
hsparse = {
|
| 138 |
+
'indices': sparse['indices'],
|
| 139 |
+
'values': [v * (1 - alpha) for v in sparse['values']]
|
| 140 |
+
}
|
| 141 |
+
hdense = [v * alpha for v in dense]
|
| 142 |
+
return hdense, hsparse
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def text_to_image(query, alpha, k_results):
|
| 146 |
+
sparse = bm25.transform_query(query)
|
| 147 |
+
dense = model.encode(query).tolist()
|
| 148 |
+
|
| 149 |
+
# scale sparse and dense vectors
|
| 150 |
+
hdense, hsparse = hybrid_scale(dense, sparse, alpha=alpha)
|
| 151 |
+
|
| 152 |
+
# search
|
| 153 |
+
result = index.query(
|
| 154 |
+
top_k=k_results,
|
| 155 |
+
vector=hdense,
|
| 156 |
+
sparse_vector=hsparse,
|
| 157 |
+
include_metadata=True
|
| 158 |
+
)
|
| 159 |
+
# used returned product ids to get images
|
| 160 |
+
imgs = [images[int(r["id"])] for r in result["matches"]]
|
| 161 |
+
|
| 162 |
+
description = []
|
| 163 |
+
for x in result["matches"]:
|
| 164 |
+
description.append( x["metadata"]['productDisplayName'] )
|
| 165 |
+
|
| 166 |
+
return imgs, description
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def img_to_file_list(imgs):
|
| 170 |
+
path = "searches"
|
| 171 |
+
sub_path = './' + path + '/' + 'search' + '_' + str(counter["dir_num"])
|
| 172 |
+
|
| 173 |
+
# Check whether the specified path exists or not
|
| 174 |
+
isExist = os.path.exists('.'+'/'+path)
|
| 175 |
+
|
| 176 |
+
if not isExist:
|
| 177 |
+
print("Directory does not exists")
|
| 178 |
+
# Create a new directory because it does not exist
|
| 179 |
+
os.makedirs('.'+'/'+path, exist_ok = True)
|
| 180 |
+
print("The new directory is created!")
|
| 181 |
+
|
| 182 |
+
# Check whether the specified path exists or not
|
| 183 |
+
isExist = os.path.exists(sub_path)
|
| 184 |
+
|
| 185 |
+
if isExist:
|
| 186 |
+
shutil.rmtree(sub_path)
|
| 187 |
+
|
| 188 |
+
os.makedirs(sub_path, exist_ok = True)
|
| 189 |
+
|
| 190 |
+
img_files = {'search'+str(counter["dir_num"]):[]}
|
| 191 |
+
i = 0
|
| 192 |
+
|
| 193 |
+
for img in imgs:
|
| 194 |
+
img.save(sub_path+"/img_" + str(i) + ".png","PNG")
|
| 195 |
+
img_files['search'+str(counter["dir_num"])].append(sub_path + '/' + 'img_'+ str(i) + ".png")
|
| 196 |
+
i+=1
|
| 197 |
+
|
| 198 |
+
counter["dir_num"]+=1
|
| 199 |
+
|
| 200 |
+
return img_files['search'+str(counter["dir_num"]-1)]
|