Spaces:
Sleeping
Sleeping
Delete src/chatbot.py
Browse files- src/chatbot.py +0 -124
src/chatbot.py
DELETED
|
@@ -1,124 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
|
| 3 |
-
from langchain.text_splitter import CharacterTextSplitter
|
| 4 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 5 |
-
from langchain.vectorstores import FAISS
|
| 6 |
-
from langchain.chains import ConversationalRetrievalChain
|
| 7 |
-
from langchain.llms import OpenAI
|
| 8 |
-
import os
|
| 9 |
-
import tempfile
|
| 10 |
-
from doc_qa import embeddings,llm
|
| 11 |
-
from doc_qa_1 import embeddings,doc_qa
|
| 12 |
-
|
| 13 |
-
def start_message(doc_name):
|
| 14 |
-
st.success("โ
ใใญใฅใกใณใใฎใขใใใญใผใใๅฎไบใใพใใ๏ผ")
|
| 15 |
-
st.markdown(f"### ๐ ใขใใใญใผใใใใพใใ: `{doc_name}`")
|
| 16 |
-
st.markdown("ใใใงๆๆธใซ้ขใใ่ณชๅใใงใใพใใ ๐ฌ")
|
| 17 |
-
st.markdown("ไพใใฐใๆฌกใฎใใใช่ณชๅใใงใใพใใ:")
|
| 18 |
-
st.markdown("- ใใฎๆๆธใฏไฝใซใคใใฆๆธใใใฆใใพใใ๏ผ")
|
| 19 |
-
st.markdown("- ้่ฆใชใใคใณใใ่ฆ็ดใใฆใใ ใใใ")
|
| 20 |
-
st.markdown("- ่่
ใฏ่ชฐใงใใ๏ผ")
|
| 21 |
-
st.markdown("ใฏใใใใซใฏใไธใซ่ณชๅใๅ
ฅๅใใฆใใ ใใใ!")
|
| 22 |
-
|
| 23 |
-
# Function to load individual file
|
| 24 |
-
def load_file(file, suffix):
|
| 25 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as temp_file:
|
| 26 |
-
temp_file.write(file.read())
|
| 27 |
-
temp_file_path = temp_file.name
|
| 28 |
-
|
| 29 |
-
if suffix == ".pdf":
|
| 30 |
-
loader = PyPDFLoader(temp_file_path)
|
| 31 |
-
elif suffix == ".docx":
|
| 32 |
-
loader = Docx2txtLoader(temp_file_path)
|
| 33 |
-
elif suffix == ".txt":
|
| 34 |
-
loader = TextLoader(temp_file_path)
|
| 35 |
-
else:
|
| 36 |
-
return []
|
| 37 |
-
|
| 38 |
-
return loader.load()
|
| 39 |
-
st.set_page_config(
|
| 40 |
-
page_title="QA Assistant",
|
| 41 |
-
page_icon="https://yourdomain.com/logo.png",
|
| 42 |
-
layout="centered"
|
| 43 |
-
)
|
| 44 |
-
# Title
|
| 45 |
-
st.title("๐ ใใญใฅใกใณใ่ณชๅๅฟ็ญๆฏๆดใใผใซ")
|
| 46 |
-
|
| 47 |
-
# Step 1: Upload document
|
| 48 |
-
if "file_uploaded" not in st.session_state:
|
| 49 |
-
st.session_state.file_uploaded = False
|
| 50 |
-
st.markdown("""
|
| 51 |
-
๐ ใใกใใธใใใใ๏ผ็งใฏๆๆธใฎๅ
ๅฎนใ็่งฃใใใใใฎใคใณใใชใธใงใณใใขใทในใฟใณใใงใใ
|
| 52 |
-
|
| 53 |
-
ใใชใใฏไปฅไธใฎใใจใใงใใพใ๏ผ
|
| 54 |
-
|
| 55 |
-
PDFใDOCXใTXTใใกใคใซใใขใใใญใผใ
|
| 56 |
-
|
| 57 |
-
ๆๆธใฎๅ
ๅฎนใซใคใใฆ่ณชๅ
|
| 58 |
-
|
| 59 |
-
่ฆ็ดใ้่ฆใใคใณใใใพใใฏๅ
ทไฝ็ใช่ฉณ็ดฐใฎๅๅพ
|
| 60 |
-
|
| 61 |
-
๐ ๏ธ ่ณชๅใฎไพ๏ผ
|
| 62 |
-
ใใฎๆๆธใฏไฝใซใคใใฆๆธใใใฆใใพใใ๏ผ
|
| 63 |
-
|
| 64 |
-
ไธป่ฆใชใใคใณใใ่ฆ็ดใใฆใใ ใใใ
|
| 65 |
-
|
| 66 |
-
่่
ใฏ่ชฐใงใใ๏ผ
|
| 67 |
-
|
| 68 |
-
้่ฆใชๆฅไปใ็ท ใๅใใฏไฝใงใใ๏ผ
|
| 69 |
-
|
| 70 |
-
็ต่ซใๆจๅฅจไบ้
ใฏไฝใงใใ๏ผ
|
| 71 |
-
|
| 72 |
-
๐ ใพใใ1ใคไปฅไธใฎๆๆธใใขใใใญใผใใใฆใใ ใใใ
|
| 73 |
-
๐ฌ ใใฎๅพใไธใซ่ณชๅใๅ
ฅๅใใพใใใ๏ผ
|
| 74 |
-
""")
|
| 75 |
-
if "messages" not in st.session_state:
|
| 76 |
-
st.session_state.messages = []
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
flag = 0
|
| 80 |
-
# Upload multiple files
|
| 81 |
-
with st.sidebar:
|
| 82 |
-
uploaded_files = st.file_uploader("PDFใDOCXใใพใใฏTXTใใกใคใซใใขใใใญใผใใใฆใใ ใใใ", type=["pdf", "docx", "txt"], accept_multiple_files=True)
|
| 83 |
-
# Load and process documents
|
| 84 |
-
file_names=[]
|
| 85 |
-
if uploaded_files:
|
| 86 |
-
all_docs = []
|
| 87 |
-
for file in uploaded_files:
|
| 88 |
-
suffix = os.path.splitext(file.name)[1]
|
| 89 |
-
docs = load_file(file, suffix)
|
| 90 |
-
all_docs.extend(docs)
|
| 91 |
-
file_names.append(file.name)
|
| 92 |
-
|
| 93 |
-
# Split and embed documents
|
| 94 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 95 |
-
split_docs = text_splitter.split_documents(all_docs)
|
| 96 |
-
#embeddings = OpenAIEmbeddings()
|
| 97 |
-
vectorstore = FAISS.from_documents(split_docs, embeddings)
|
| 98 |
-
|
| 99 |
-
# Setup ConversationalRetrievalChain
|
| 100 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 101 |
-
llm=llm,
|
| 102 |
-
retriever=vectorstore.as_retriever(),
|
| 103 |
-
return_source_documents=False
|
| 104 |
-
)
|
| 105 |
-
start_message('\n'.join(file_names))
|
| 106 |
-
flag = 1
|
| 107 |
-
|
| 108 |
-
# Initialize session state
|
| 109 |
-
if "chat_history" not in st.session_state:
|
| 110 |
-
st.session_state.chat_history = []
|
| 111 |
-
|
| 112 |
-
for msg in st.session_state.messages:
|
| 113 |
-
st.chat_message(msg["role"]).write(msg["content"])
|
| 114 |
-
|
| 115 |
-
if flag==1:
|
| 116 |
-
if user_query := st.chat_input():
|
| 117 |
-
st.session_state.messages.append({"role": "user", "content": user_query})
|
| 118 |
-
with st.chat_message("user"):
|
| 119 |
-
st.markdown(f"**Q:** {user_query}")
|
| 120 |
-
result=doc_qa(user_query,vectorstore)
|
| 121 |
-
st.session_state.messages.append({"role": "assistant", "content": result["answer"]})
|
| 122 |
-
with st.chat_message("assistant"):
|
| 123 |
-
st.markdown(result["answer"])
|
| 124 |
-
st.session_state.chat_history.append((user_query, result["answer"]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|