Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- src/doc_qa.py +124 -0
- src/doc_qa_1.py +62 -0
src/doc_qa.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, List
|
| 2 |
+
|
| 3 |
+
from langchain.document_loaders import TextLoader #for textfiles
|
| 4 |
+
from langchain.text_splitter import CharacterTextSplitter #text splitter
|
| 5 |
+
from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models
|
| 6 |
+
|
| 7 |
+
from langchain.document_loaders import UnstructuredPDFLoader #load pdf
|
| 8 |
+
from langchain.indexes import VectorstoreIndexCreator #vectorize db index with chromadb
|
| 9 |
+
from langchain.chains import RetrievalQA
|
| 10 |
+
from langchain.document_loaders import UnstructuredURLLoader #load urls into docoument-loader
|
| 11 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 12 |
+
from langchain import HuggingFaceHub
|
| 13 |
+
import os
|
| 14 |
+
from langchain.document_loaders import TextLoader, PyMuPDFLoader
|
| 15 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 16 |
+
from langchain.llms import HuggingFacePipeline
|
| 17 |
+
from langchain.vectorstores import FAISS
|
| 18 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 19 |
+
from langchain import PromptTemplate
|
| 20 |
+
from langchain.chains import LLMChain
|
| 21 |
+
from langchain.base_language import BaseLanguageModel
|
| 22 |
+
from docx import Document
|
| 23 |
+
from langchain.document_loaders import DirectoryLoader
|
| 24 |
+
multi_directory_path=r'tmp/'
|
| 25 |
+
|
| 26 |
+
from transformers import pipeline
|
| 27 |
+
|
| 28 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/LaBSE')
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
from langchain_community.document_loaders import TextLoader, PyPDFLoader, Docx2txtLoader
|
| 32 |
+
|
| 33 |
+
after_rag_template = """Answer the question based only on the following context:
|
| 34 |
+
{context}
|
| 35 |
+
Question: {question}
|
| 36 |
+
"""
|
| 37 |
+
#pipe = pipeline("text2text-generation", model="google/flan-t5-large" ,max_new_tokens=100)
|
| 38 |
+
#pipe = pipeline("text2text-generation", model="google/mt5-large" ,max_new_tokens=200)
|
| 39 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 40 |
+
#tokenizer = AutoTokenizer.from_pretrained("rinna/bilingual-gpt-neox-4b", use_fast=False)
|
| 41 |
+
#model = AutoModelForSeq2SeqLM.from_pretrained("google/mt5-base")
|
| 42 |
+
# Load model directly
|
| 43 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 44 |
+
|
| 45 |
+
#tokenizer = AutoTokenizer.from_pretrained("rinna/bilingual-gpt-neox-4b")
|
| 46 |
+
#model = AutoModelForCausalLM.from_pretrained("rinna/bilingual-gpt-neox-4b")
|
| 47 |
+
#pipe = pipeline("text2text-generation", model="rinna/bilingual-gpt-neox-4b" ,max_new_tokens=200)
|
| 48 |
+
#pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_new_tokens=200)
|
| 49 |
+
|
| 50 |
+
pipe = pipeline("question-answering", model="deepset/xlm-roberta-base-squad2")
|
| 51 |
+
|
| 52 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 53 |
+
|
| 54 |
+
def run_custom_qa(question, retrieved_docs):
|
| 55 |
+
context = " ".join([doc.page_content for doc in retrieved_docs])
|
| 56 |
+
output = pipe(question=question, context=context)
|
| 57 |
+
return output["answer"]
|
| 58 |
+
|
| 59 |
+
def docs_vector_index():
|
| 60 |
+
from langchain.document_loaders import DirectoryLoader
|
| 61 |
+
# Define a directory path
|
| 62 |
+
directory_path = r"C:\Users\savni\PycharmProjects\DocsSearchEngine\tmp"
|
| 63 |
+
|
| 64 |
+
# Create the DirectoryLoader, specifying loaders for each file type
|
| 65 |
+
loader = DirectoryLoader(
|
| 66 |
+
directory_path,
|
| 67 |
+
glob="**/*", # This pattern loads all files; modify as needed
|
| 68 |
+
|
| 69 |
+
)
|
| 70 |
+
docs = loader.load()
|
| 71 |
+
|
| 72 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 73 |
+
chunk_size=1024, chunk_overlap=100, separators=[" ", ",", "\n", "."]
|
| 74 |
+
)
|
| 75 |
+
print(docs)
|
| 76 |
+
docs_chunks = text_splitter.split_documents(docs)
|
| 77 |
+
|
| 78 |
+
print(f"docs_chunks length: {len(docs_chunks)}")
|
| 79 |
+
print('********************docs_chunks',docs_chunks)
|
| 80 |
+
if len(docs_chunks)>0:
|
| 81 |
+
db = FAISS.from_documents(docs_chunks, embeddings)
|
| 82 |
+
return db
|
| 83 |
+
else:
|
| 84 |
+
return ''
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
#chain = load_qa_chain(llm, chain_type="stuff")
|
| 88 |
+
|
| 89 |
+
from langchain.prompts import PromptTemplate
|
| 90 |
+
|
| 91 |
+
template = """You are an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. Below is some information.
|
| 92 |
+
{context}
|
| 93 |
+
|
| 94 |
+
Based on the above information only, answer the below question.
|
| 95 |
+
|
| 96 |
+
{question} Be concise."""
|
| 97 |
+
|
| 98 |
+
prompt = PromptTemplate.from_template(template)
|
| 99 |
+
print(prompt.input_variables)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
#query_llm = LLMChain(llm=llm, prompt=prompt)
|
| 103 |
+
|
| 104 |
+
# def doc_qa1(query, db):
|
| 105 |
+
# similar_doc = db.similarity_search(query, k=2)
|
| 106 |
+
# doc_c=[]
|
| 107 |
+
# for c in similar_doc:
|
| 108 |
+
# doc_c.append(c.page_content)
|
| 109 |
+
# context=''.join(doc_c)
|
| 110 |
+
# #response = query_llm.run({"context": context, "question": query})
|
| 111 |
+
# response = query_llm.run(context=context, question=query)
|
| 112 |
+
# print('response',response)
|
| 113 |
+
# return response
|
| 114 |
+
|
| 115 |
+
def doc_qa(query, db):
|
| 116 |
+
print("*************************custom qa doc_qa",query)
|
| 117 |
+
retriever = db.as_retriever()
|
| 118 |
+
relevant_docs = retriever.get_relevant_documents(query)
|
| 119 |
+
response=run_custom_qa(query, relevant_docs)
|
| 120 |
+
print('response', response)
|
| 121 |
+
return response
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
src/doc_qa_1.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.vectorstores import FAISS
|
| 2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 5 |
+
from langchain.docstore.document import Document
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# Step 1: Load QA pipeline (don't wrap in HuggingFacePipeline)
|
| 11 |
+
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small")
|
| 12 |
+
qa_pipeline = pipeline("question-answering", model="deepset/xlm-roberta-base-squad2")
|
| 13 |
+
multi_directory_path=r'tmp/'
|
| 14 |
+
|
| 15 |
+
def docs_vector_index():
|
| 16 |
+
from langchain.document_loaders import DirectoryLoader
|
| 17 |
+
# Define a directory path
|
| 18 |
+
directory_path = r"C:\Users\savni\PycharmProjects\DocsSearchEngine\tmp"
|
| 19 |
+
|
| 20 |
+
# Create the DirectoryLoader, specifying loaders for each file type
|
| 21 |
+
loader = DirectoryLoader(
|
| 22 |
+
directory_path,
|
| 23 |
+
glob="**/*", # This pattern loads all files; modify as needed
|
| 24 |
+
|
| 25 |
+
)
|
| 26 |
+
docs = loader.load()
|
| 27 |
+
|
| 28 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 29 |
+
chunk_size=1024, chunk_overlap=100, separators=[" ", ",", "\n", "."]
|
| 30 |
+
)
|
| 31 |
+
print(docs)
|
| 32 |
+
docs_chunks = text_splitter.split_documents(docs)
|
| 33 |
+
|
| 34 |
+
print(f"docs_chunks length: {len(docs_chunks)}")
|
| 35 |
+
print('********************docs_chunks',docs_chunks)
|
| 36 |
+
if len(docs_chunks)>0:
|
| 37 |
+
db = FAISS.from_documents(docs_chunks, embeddings)
|
| 38 |
+
return db
|
| 39 |
+
else:
|
| 40 |
+
return ''
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def run_custom_qa(question, retrieved_docs):
|
| 45 |
+
context = " ".join([doc.page_content for doc in retrieved_docs])
|
| 46 |
+
output = qa_pipeline(question=question, context=context)
|
| 47 |
+
return output #output["answer"]
|
| 48 |
+
|
| 49 |
+
# # Step 6: Ask question
|
| 50 |
+
# question = "鏉变含澶у銇亜銇よō绔嬨仌銈屻伨銇椼仧銇嬶紵"
|
| 51 |
+
# relevant_docs = retriever.get_relevant_documents(question)
|
| 52 |
+
# answer = run_custom_qa(question, relevant_docs)
|
| 53 |
+
#
|
| 54 |
+
# print("Answer:", answer)
|
| 55 |
+
|
| 56 |
+
def doc_qa(query, db):
|
| 57 |
+
print("*************************custom qa doc_qa",query)
|
| 58 |
+
retriever = db.as_retriever()
|
| 59 |
+
relevant_docs = retriever.get_relevant_documents(query)
|
| 60 |
+
response=run_custom_qa(query, relevant_docs)
|
| 61 |
+
print('response', response)
|
| 62 |
+
return response
|