sujeongim0402@gmail.com
commited on
Commit
ยท
acd3317
1
Parent(s):
cbc2699
edit codes
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ from PIL import Image
|
|
| 7 |
import tensorflow as tf
|
| 8 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
| 9 |
|
|
|
|
| 10 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
| 11 |
"nvidia/segformer-b3-finetuned-cityscapes-1024-1024"
|
| 12 |
|
|
@@ -15,6 +16,7 @@ model = TFSegformerForSemanticSegmentation.from_pretrained(
|
|
| 15 |
"nvidia/segformer-b3-finetuned-cityscapes-1024-1024"
|
| 16 |
)
|
| 17 |
|
|
|
|
| 18 |
def ade_palette():
|
| 19 |
return [
|
| 20 |
[204, 87, 92],
|
|
@@ -38,14 +40,17 @@ def ade_palette():
|
|
| 38 |
[180, 32, 10],
|
| 39 |
]
|
| 40 |
|
|
|
|
| 41 |
labels_list = []
|
| 42 |
|
| 43 |
with open(r'labels.txt', 'r') as fp:
|
| 44 |
for line in fp:
|
| 45 |
labels_list.append(line[:-1])
|
| 46 |
|
|
|
|
| 47 |
colormap = np.asarray(ade_palette())
|
| 48 |
|
|
|
|
| 49 |
def label_to_color_image(label):
|
| 50 |
if label.ndim != 2:
|
| 51 |
raise ValueError("Expect 2-D input label")
|
|
@@ -54,14 +59,17 @@ def label_to_color_image(label):
|
|
| 54 |
raise ValueError("label value too large.")
|
| 55 |
return colormap[label]
|
| 56 |
|
|
|
|
| 57 |
def draw_plot(pred_img, seg):
|
|
|
|
| 58 |
fig = plt.figure(figsize=(20, 15))
|
| 59 |
-
|
| 60 |
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
| 61 |
|
| 62 |
plt.subplot(grid_spec[0])
|
| 63 |
plt.imshow(pred_img)
|
| 64 |
plt.axis('off')
|
|
|
|
|
|
|
| 65 |
LABEL_NAMES = np.asarray(labels_list)
|
| 66 |
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
| 67 |
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
|
@@ -75,36 +83,44 @@ def draw_plot(pred_img, seg):
|
|
| 75 |
ax.tick_params(width=0.0, labelsize=25)
|
| 76 |
return fig
|
| 77 |
|
|
|
|
| 78 |
def sepia(input_img):
|
| 79 |
input_img = Image.fromarray(input_img)
|
| 80 |
|
|
|
|
| 81 |
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
| 82 |
outputs = model(**inputs)
|
| 83 |
logits = outputs.logits
|
| 84 |
|
|
|
|
| 85 |
logits = tf.transpose(logits, [0, 2, 3, 1])
|
| 86 |
logits = tf.image.resize(
|
| 87 |
logits, input_img.size[::-1]
|
| 88 |
-
)
|
|
|
|
|
|
|
| 89 |
seg = tf.math.argmax(logits, axis=-1)[0]
|
| 90 |
|
| 91 |
color_seg = np.zeros(
|
| 92 |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
| 93 |
-
)
|
| 94 |
for label, color in enumerate(colormap):
|
| 95 |
color_seg[seg.numpy() == label, :] = color
|
| 96 |
|
| 97 |
-
#
|
| 98 |
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
| 99 |
pred_img = pred_img.astype(np.uint8)
|
| 100 |
|
|
|
|
| 101 |
fig = draw_plot(pred_img, seg)
|
| 102 |
return fig
|
| 103 |
|
|
|
|
| 104 |
demo = gr.Interface(fn=sepia,
|
| 105 |
inputs=gr.Image(shape=(400, 600)),
|
| 106 |
outputs=['plot'],
|
| 107 |
examples=["city-1.jpg", "city-2.jpg", "city-3.jpg"],
|
| 108 |
allow_flagging='never')
|
| 109 |
|
|
|
|
| 110 |
demo.launch()
|
|
|
|
| 7 |
import tensorflow as tf
|
| 8 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
| 9 |
|
| 10 |
+
# ์ฌ์ ํ๋ จ๋ Segformer ํน์ฑ ์ถ์ถ๊ธฐ์ ์๋งจํฑ ์ธ๊ทธ๋ฉํ
์ด์
๋ชจ๋ธ์ ๋ก๋
|
| 11 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
| 12 |
"nvidia/segformer-b3-finetuned-cityscapes-1024-1024"
|
| 13 |
|
|
|
|
| 16 |
"nvidia/segformer-b3-finetuned-cityscapes-1024-1024"
|
| 17 |
)
|
| 18 |
|
| 19 |
+
# ADE20K ๋ฐ์ดํฐ์
์ ์ํ RBG ์์๊ฐ ์ ์
|
| 20 |
def ade_palette():
|
| 21 |
return [
|
| 22 |
[204, 87, 92],
|
|
|
|
| 40 |
[180, 32, 10],
|
| 41 |
]
|
| 42 |
|
| 43 |
+
# 'labels.txt'์์ ๋ก๋ํ ๋ผ๋ฒจ ๋ชฉ๋ก ์ ์
|
| 44 |
labels_list = []
|
| 45 |
|
| 46 |
with open(r'labels.txt', 'r') as fp:
|
| 47 |
for line in fp:
|
| 48 |
labels_list.append(line[:-1])
|
| 49 |
|
| 50 |
+
# ์ ์ํ ์์ ๋ฐฐ์ด์ NumPy ๋ฐฐ์ด๋ก ๋ณํ
|
| 51 |
colormap = np.asarray(ade_palette())
|
| 52 |
|
| 53 |
+
# ๋ผ๋ฒจ์ ์ ์ด๋ฏธ์ง๋ก ๋งคํํ๋ ํจ์
|
| 54 |
def label_to_color_image(label):
|
| 55 |
if label.ndim != 2:
|
| 56 |
raise ValueError("Expect 2-D input label")
|
|
|
|
| 59 |
raise ValueError("label value too large.")
|
| 60 |
return colormap[label]
|
| 61 |
|
| 62 |
+
# ์์ธก๋ ์ด๋ฏธ์ง์ ์์ ๋งต์ ํฌํจํ ํ๋กฏ์ ๊ทธ๋ฆฌ๋ ํจ์
|
| 63 |
def draw_plot(pred_img, seg):
|
| 64 |
+
# ์์ธก๋ ์ด๋ฏธ์ง ๋ฐ ์์ ๋งต ํ๋กฏ ๋ง๋ค๊ธฐ
|
| 65 |
fig = plt.figure(figsize=(20, 15))
|
|
|
|
| 66 |
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
| 67 |
|
| 68 |
plt.subplot(grid_spec[0])
|
| 69 |
plt.imshow(pred_img)
|
| 70 |
plt.axis('off')
|
| 71 |
+
|
| 72 |
+
# ์ธ๊ทธ๋ฉํ
์ด์
๋ผ๋ฒจ์ ์ํ ์์ ๋งต ์ค์
|
| 73 |
LABEL_NAMES = np.asarray(labels_list)
|
| 74 |
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
| 75 |
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
|
|
|
| 83 |
ax.tick_params(width=0.0, labelsize=25)
|
| 84 |
return fig
|
| 85 |
|
| 86 |
+
# Input ์ด๋ฏธ์ง์ Segformer ๋ชจ๋ธ์ ์ ์ฉํ๊ณ ํ๋กฏ์ ๋ง๋๋ ํจ์
|
| 87 |
def sepia(input_img):
|
| 88 |
input_img = Image.fromarray(input_img)
|
| 89 |
|
| 90 |
+
# feature ์ถ์ถ ํ Segformer ๋ชจ๋ธ๋ก ์์ธก
|
| 91 |
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
| 92 |
outputs = model(**inputs)
|
| 93 |
logits = outputs.logits
|
| 94 |
|
| 95 |
+
# ์
๋ ฅ ์ด๋ฏธ์ง ํฌ๊ธฐ์ ์ผ์นํ๋๋ก ํฌ๊ธฐ ์กฐ์
|
| 96 |
logits = tf.transpose(logits, [0, 2, 3, 1])
|
| 97 |
logits = tf.image.resize(
|
| 98 |
logits, input_img.size[::-1]
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# ์ธ๊ทธ๋ฉํ
์ด์
์ ์ถ์ถํ๊ณ ๋ผ๋ฒจ์ ์์์ผ๋ก ๋งคํ
|
| 102 |
seg = tf.math.argmax(logits, axis=-1)[0]
|
| 103 |
|
| 104 |
color_seg = np.zeros(
|
| 105 |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
| 106 |
+
)
|
| 107 |
for label, color in enumerate(colormap):
|
| 108 |
color_seg[seg.numpy() == label, :] = color
|
| 109 |
|
| 110 |
+
# ์๋ณธ๊ณผ ์ธ๊ทธ๋ฉํ
์ด์
์ด ํผํฉ๋ ์ด๋ฏธ์ง๋ฅผ ์์ฑ
|
| 111 |
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
| 112 |
pred_img = pred_img.astype(np.uint8)
|
| 113 |
|
| 114 |
+
# ์์ธก๋ ์ด๋ฏธ์ง์ ์์ ๋งต์ ํฌํจํ ํ๋กฏ ๊ทธ๋ฆฌ๊ธฐ
|
| 115 |
fig = draw_plot(pred_img, seg)
|
| 116 |
return fig
|
| 117 |
|
| 118 |
+
# sepia ํจ์์ ๋ํ Gradio ์ธํฐํ์ด์ค ์์ฑ
|
| 119 |
demo = gr.Interface(fn=sepia,
|
| 120 |
inputs=gr.Image(shape=(400, 600)),
|
| 121 |
outputs=['plot'],
|
| 122 |
examples=["city-1.jpg", "city-2.jpg", "city-3.jpg"],
|
| 123 |
allow_flagging='never')
|
| 124 |
|
| 125 |
+
# Gradio ์ธํฐํ์ด์ค ์คํ
|
| 126 |
demo.launch()
|