Spaces:
Running
Running
| import os | |
| import time | |
| import gc | |
| import threading | |
| from itertools import islice | |
| from datetime import datetime | |
| import gradio as gr | |
| import torch | |
| from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
| from duckduckgo_search import DDGS | |
| import spaces # Import spaces early to enable ZeroGPU support | |
| # Optional: Disable GPU visibility if you wish to force CPU usage | |
| # os.environ["CUDA_VISIBLE_DEVICES"] = "" | |
| # ------------------------------ | |
| # Global Cancellation Event | |
| # ------------------------------ | |
| cancel_event = threading.Event() | |
| # ------------------------------ | |
| # Torch-Compatible Model Definitions with Adjusted Descriptions | |
| # ------------------------------ | |
| MODELS = { | |
| "Gemma-3-4B-IT": { | |
| "repo_id": "unsloth/gemma-3-4b-it", | |
| "description": "Gemma-3-4B-IT" | |
| }, | |
| "SmolLM2-135M-Instruct-TaiwanChat": { | |
| "repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat", | |
| "description": "SmolLM2‑135M Instruct fine-tuned on the TaiwanChat" | |
| }, | |
| "SmolLM2-135M-Instruct": { | |
| "repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct", | |
| "description": "Original SmolLM2‑135M Instruct" | |
| }, | |
| "Llama-3.2-Taiwan-3B-Instruct": { | |
| "repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct", | |
| "description": "Llama-3.2-Taiwan-3B-Instruct" | |
| }, | |
| "MiniCPM3-4B": { | |
| "repo_id": "openbmb/MiniCPM3-4B", | |
| "description": "MiniCPM3-4B" | |
| }, | |
| "Qwen2.5-3B-Instruct": { | |
| "repo_id": "Qwen/Qwen2.5-3B-Instruct", | |
| "description": "Qwen2.5-3B-Instruct" | |
| }, | |
| "Qwen2.5-7B-Instruct": { | |
| "repo_id": "Qwen/Qwen2.5-7B-Instruct", | |
| "description": "Qwen2.5-7B-Instruct" | |
| }, | |
| "Phi-4-mini-Instruct": { | |
| "repo_id": "unsloth/Phi-4-mini-instruct", | |
| "description": "Phi-4-mini-Instruct" | |
| }, | |
| "Meta-Llama-3.1-8B-Instruct": { | |
| "repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct", | |
| "description": "Meta-Llama-3.1-8B-Instruct" | |
| }, | |
| "DeepSeek-R1-Distill-Llama-8B": { | |
| "repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B", | |
| "description": "DeepSeek-R1-Distill-Llama-8B" | |
| }, | |
| "Mistral-7B-Instruct-v0.3": { | |
| "repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3", | |
| "description": "Mistral-7B-Instruct-v0.3" | |
| }, | |
| "Qwen2.5-Coder-7B-Instruct": { | |
| "repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct", | |
| "description": "Qwen2.5-Coder-7B-Instruct" | |
| }, | |
| } | |
| # Global cache for pipelines to avoid re-loading. | |
| PIPELINES = {} | |
| def load_pipeline(model_name): | |
| """ | |
| Load and cache a transformers pipeline for chat/text-generation. | |
| Uses the model's repo_id from MODELS and caches the pipeline for future use. | |
| """ | |
| global PIPELINES | |
| if model_name in PIPELINES: | |
| return PIPELINES[model_name] | |
| selected_model = MODELS[model_name] | |
| # Create a chat-style text-generation pipeline. | |
| pipe = pipeline( | |
| task="text-generation", | |
| model=selected_model["repo_id"], | |
| tokenizer=selected_model["repo_id"], | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto" | |
| ) | |
| PIPELINES[model_name] = pipe | |
| return pipe | |
| def retrieve_context(query, max_results=6, max_chars_per_result=600): | |
| """ | |
| Retrieve recent web search context for the given query using DuckDuckGo. | |
| Returns a formatted string with search results. | |
| """ | |
| try: | |
| with DDGS() as ddgs: | |
| results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results)) | |
| context = "" | |
| for i, result in enumerate(results, start=1): | |
| title = result.get("title", "No Title") | |
| snippet = result.get("body", "")[:max_chars_per_result] | |
| context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n" | |
| return context.strip() | |
| except Exception: | |
| return "" | |
| # ---------------------------------------------------------------------------- | |
| # NEW HELPER FUNCTION: Format Conversation History into a Clean Prompt | |
| # ---------------------------------------------------------------------------- | |
| def format_conversation(conversation, system_prompt): | |
| """ | |
| Converts a list of conversation messages (each a dict with 'role' and 'content') | |
| and a system prompt into a single plain text string. | |
| This prevents raw role labels from being passed to the model. | |
| """ | |
| # Start with the system prompt. | |
| prompt = system_prompt.strip() + "\n" | |
| # Loop through conversation and format user and assistant messages. | |
| for msg in conversation: | |
| if msg["role"] == "user": | |
| prompt += "User: " + msg["content"].strip() + "\n" | |
| elif msg["role"] == "assistant": | |
| prompt += "Assistant: " + msg["content"].strip() + "\n" | |
| elif msg["role"] == "system": | |
| prompt += msg["content"].strip() + "\n" | |
| # Append the assistant cue to indicate the start of the reply. | |
| if not prompt.strip().endswith("Assistant:"): | |
| prompt += "Assistant: " | |
| return prompt | |
| # ------------------------------ | |
| # Chat Response Generation with ZeroGPU using Pipeline (Streaming Token-by-Token) | |
| # ------------------------------ | |
| def chat_response(user_message, chat_history, system_prompt, enable_search, | |
| max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty): | |
| """ | |
| Generate a chat response by utilizing a transformers pipeline with streaming. | |
| - Appends the user's message to the conversation history. | |
| - Optionally retrieves web search context and inserts it as an additional system message. | |
| - Converts the conversation into a formatted prompt to avoid leaking role labels. | |
| - Uses the cached pipeline’s underlying model and tokenizer with a streamer to yield tokens as they are generated. | |
| - Yields updated conversation history token by token. | |
| """ | |
| cancel_event.clear() | |
| # Build conversation list from chat history. | |
| conversation = list(chat_history) if chat_history else [] | |
| conversation.append({"role": "user", "content": user_message}) | |
| # Retrieve web search context if enabled. | |
| debug_message = "" | |
| if enable_search: | |
| debug_message = "Initiating web search..." | |
| yield conversation, debug_message | |
| search_result = [""] | |
| def do_search(): | |
| search_result[0] = retrieve_context(user_message, max_results, max_chars) | |
| search_thread = threading.Thread(target=do_search) | |
| search_thread.start() | |
| search_thread.join(timeout=2) | |
| retrieved_context = search_result[0] | |
| if retrieved_context: | |
| debug_message = f"Web search results:\n\n{retrieved_context}" | |
| # Insert the search context as a system-level message immediately after the original system prompt. | |
| conversation.insert(1, {"role": "system", "content": f"Web search context:\n{retrieved_context}"}) | |
| else: | |
| debug_message = "Web search returned no results or timed out." | |
| else: | |
| debug_message = "Web search disabled." | |
| # Append a placeholder for the assistant's response. | |
| conversation.append({"role": "assistant", "content": ""}) | |
| try: | |
| # Format the entire conversation into a single prompt. | |
| prompt_text = format_conversation(conversation, system_prompt) | |
| # Load the pipeline. | |
| pipe = load_pipeline(model_name) | |
| # Set up a streamer tied to the pipeline’s tokenizer. | |
| streamer = TextIteratorStreamer( | |
| pipe.tokenizer, | |
| skip_prompt=True, | |
| skip_special_tokens=True | |
| ) | |
| # Kick off generation via the pipeline itself. | |
| thread = threading.Thread( | |
| target=pipe, | |
| args=(prompt_text,), | |
| kwargs={ | |
| "max_new_tokens": max_tokens, | |
| "temperature": temperature, | |
| "top_k": top_k, | |
| "top_p": top_p, | |
| "repetition_penalty": repeat_penalty, | |
| "streamer": streamer, | |
| "return_full_text": False, | |
| } | |
| ) | |
| thread.start() | |
| # Collect tokens from the streamer as they are generated. | |
| assistant_text = "" | |
| for new_text in streamer: | |
| assistant_text += new_text | |
| conversation[-1]["content"] = assistant_text | |
| yield conversation, debug_message # Update UI token by token | |
| thread.join() | |
| except Exception as e: | |
| conversation[-1]["content"] = f"Error: {e}" | |
| yield conversation, debug_message | |
| finally: | |
| gc.collect() | |
| # ------------------------------ | |
| # Cancel Function | |
| # ------------------------------ | |
| def cancel_generation(): | |
| cancel_event.set() | |
| return "Cancellation requested." | |
| # ------------------------------ | |
| # Helper Function for Default Prompt Update | |
| # ------------------------------ | |
| def update_default_prompt(enable_search): | |
| today = datetime.now().strftime('%Y-%m-%d') | |
| if enable_search: | |
| return f"You are a helpful assistant. Today is {today}. Please leverage the latest web data when responding to queries." | |
| else: | |
| return f"You are a helpful assistant. Today is {today}." | |
| # ------------------------------ | |
| # Gradio UI Definition | |
| # ------------------------------ | |
| with gr.Blocks(title="LLM Inference with ZeroGPU") as demo: | |
| gr.Markdown("## 🧠 ZeroGPU LLM Inference with Web Search") | |
| gr.Markdown("Interact with the model. Select your model, set your system prompt, and adjust parameters on the left.") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| default_model = list(MODELS.keys())[0] if MODELS else "No models available" | |
| model_dropdown = gr.Dropdown( | |
| label="Select Model", | |
| choices=list(MODELS.keys()) if MODELS else [], | |
| value=default_model, | |
| info="Choose from available models." | |
| ) | |
| # Create the Enable Web Search checkbox. | |
| enable_search_checkbox = gr.Checkbox(label="Enable Web Search", value=True, | |
| info="Include recent search context to improve answers.") | |
| # Create the System Prompt textbox with an initial value. | |
| system_prompt_text = gr.Textbox(label="System Prompt", | |
| value=update_default_prompt(enable_search_checkbox.value), | |
| lines=3, | |
| info="Define the base context for the AI's responses.") | |
| gr.Markdown("### Generation Parameters") | |
| max_tokens_slider = gr.Slider(label="Max Tokens", minimum=64, maximum=1024, value=1024, step=32, | |
| info="Maximum tokens for the response.") | |
| temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7, step=0.1, | |
| info="Controls the randomness of the output.") | |
| top_k_slider = gr.Slider(label="Top-K", minimum=1, maximum=100, value=40, step=1, | |
| info="Limits token candidates to the top-k tokens.") | |
| top_p_slider = gr.Slider(label="Top-P (Nucleus Sampling)", minimum=0.1, maximum=1.0, value=0.95, step=0.05, | |
| info="Limits token candidates to a cumulative probability threshold.") | |
| repeat_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.1, step=0.1, | |
| info="Penalizes token repetition to improve diversity.") | |
| gr.Markdown("### Web Search Settings") | |
| max_results_number = gr.Number(label="Max Search Results", value=10, precision=0, | |
| info="Maximum number of search results to retrieve.") | |
| max_chars_number = gr.Number(label="Max Chars per Result", value=2000, precision=0, | |
| info="Maximum characters to retrieve per search result.") | |
| clear_button = gr.Button("Clear Chat") | |
| cancel_button = gr.Button("Cancel Generation") | |
| with gr.Column(scale=7): | |
| chatbot = gr.Chatbot(label="Chat", type="messages") | |
| msg_input = gr.Textbox(label="Your Message", placeholder="Enter your message and press Enter") | |
| search_debug = gr.Markdown(label="Web Search Debug") | |
| # Wire the Enable Web Search checkbox change to update the System Prompt textbox. | |
| enable_search_checkbox.change( | |
| fn=update_default_prompt, | |
| inputs=[enable_search_checkbox], | |
| outputs=[system_prompt_text] | |
| ) | |
| def clear_chat(): | |
| return [], "", "" | |
| clear_button.click(fn=clear_chat, outputs=[chatbot, msg_input, search_debug]) | |
| cancel_button.click(fn=cancel_generation, outputs=search_debug) | |
| # Submission: the chat_response function is used with streaming. | |
| msg_input.submit( | |
| fn=chat_response, | |
| inputs=[msg_input, chatbot, system_prompt_text, enable_search_checkbox, | |
| max_results_number, max_chars_number, model_dropdown, | |
| max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repeat_penalty_slider], | |
| outputs=[chatbot, search_debug], | |
| ) | |
| demo.launch() | |