Spaces:
Running
Running
| import streamlit as st | |
| from llama_cpp import Llama | |
| from huggingface_hub import hf_hub_download | |
| hf_hub_download( | |
| repo_id="Qwen/Qwen2.5-7B-Instruct-GGUF", | |
| filename="qwen2.5-7b-instruct-q2_k.gguf", | |
| local_dir="./models", | |
| ) | |
| # Load the model (on first run) | |
| def load_model(): | |
| return Llama( | |
| model_path="models/qwen2.5-7b-instruct-q2_k.gguf", | |
| n_ctx=1024, | |
| n_threads=2, | |
| n_threads_batch=2, | |
| n_batch=4, | |
| n_gpu_layers=0, | |
| use_mlock=False, | |
| use_mmap=True, | |
| verbose=False, | |
| ) | |
| llm = load_model() | |
| # Session state for chat history | |
| if "chat_history" not in st.session_state: | |
| st.session_state.chat_history = [] | |
| st.title("🧠 Qwen2.5-7B-Instruct (Streamlit + GGUF)") | |
| st.caption("Powered by `llama.cpp` and `llama-cpp-python` | 2-bit Q2_K inference") | |
| with st.sidebar: | |
| st.header("⚙️ Settings") | |
| system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80) | |
| max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32) | |
| temperature = st.slider("Temperature", 0.1, 2.0, 0.7) | |
| top_k = st.slider("Top-K", 1, 100, 40) | |
| top_p = st.slider("Top-P", 0.1, 1.0, 0.95) | |
| repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1) | |
| # Input box | |
| user_input = st.chat_input("Ask something...") | |
| if user_input: | |
| # Add user message to chat | |
| st.session_state.chat_history.append({"role": "user", "content": user_input}) | |
| # Display user message | |
| with st.chat_message("user"): | |
| st.markdown(user_input) | |
| # Construct the prompt | |
| messages = [{"role": "system", "content": system_prompt}] + st.session_state.chat_history | |
| # Stream response | |
| with st.chat_message("assistant"): | |
| full_response = "" | |
| response_area = st.empty() | |
| stream = llm.create_chat_completion( | |
| messages=messages, | |
| max_tokens=max_tokens, | |
| temperature=temperature, | |
| top_k=top_k, | |
| top_p=top_p, | |
| repeat_penalty=repeat_penalty, | |
| stream=True, | |
| ) | |
| for chunk in stream: | |
| if "choices" in chunk: | |
| delta = chunk["choices"][0]["delta"].get("content", "") | |
| full_response += delta | |
| response_area.markdown(full_response) | |
| st.session_state.chat_history.append({"role": "assistant", "content": full_response}) | |