Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from matplotlib import pyplot as plt
|
| 4 |
+
|
| 5 |
+
from sklearn import linear_model, datasets
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
theme = gr.themes.Monochrome(
|
| 9 |
+
primary_hue="indigo",
|
| 10 |
+
secondary_hue="blue",
|
| 11 |
+
neutral_hue="slate",
|
| 12 |
+
)
|
| 13 |
+
model_card = f"""
|
| 14 |
+
## Description
|
| 15 |
+
|
| 16 |
+
**Random sample consensus (RANSAC)** is a method to estimate a mathematical model from a set of observed data that may have some wrong information.
|
| 17 |
+
The number of times it tries affects how likely it is to get a good answer. **RANSAC** is commonly used in photogrammetry to solve problems with linear or non-linear regression.
|
| 18 |
+
It works by separating the input data into two groups: inliers (which may have some noise) and outliers (which are wrong data). It estimates the model only using the inliers.
|
| 19 |
+
In this demo, a simulation regression dataset with noise is created, and then compare the results of fitting data in **Linear model** and **RANSAC**.
|
| 20 |
+
You can play around with different ``number of samples`` and ``number of outliers`` to see the effect
|
| 21 |
+
|
| 22 |
+
## Dataset
|
| 23 |
+
|
| 24 |
+
Simulation dataset
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def do_train(n_samples, n_outliers):
|
| 29 |
+
|
| 30 |
+
X, y, coef = datasets.make_regression(
|
| 31 |
+
n_samples=n_samples,
|
| 32 |
+
n_features=1,
|
| 33 |
+
n_informative=1,
|
| 34 |
+
noise=10,
|
| 35 |
+
coef=True,
|
| 36 |
+
random_state=0,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Add outlier data
|
| 40 |
+
np.random.seed(0)
|
| 41 |
+
X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1))
|
| 42 |
+
y[:n_outliers] = -3 + 10 * np.random.normal(size=n_outliers)
|
| 43 |
+
|
| 44 |
+
# Fit line using all data
|
| 45 |
+
lr = linear_model.LinearRegression()
|
| 46 |
+
lr.fit(X, y)
|
| 47 |
+
|
| 48 |
+
# Robustly fit linear model with RANSAC algorithm
|
| 49 |
+
ransac = linear_model.RANSACRegressor()
|
| 50 |
+
ransac.fit(X, y)
|
| 51 |
+
inlier_mask = ransac.inlier_mask_
|
| 52 |
+
outlier_mask = np.logical_not(inlier_mask)
|
| 53 |
+
|
| 54 |
+
# Predict data of estimated models
|
| 55 |
+
line_X = np.arange(X.min(), X.max())[:, np.newaxis]
|
| 56 |
+
line_y = lr.predict(line_X)
|
| 57 |
+
line_y_ransac = ransac.predict(line_X)
|
| 58 |
+
|
| 59 |
+
text = f"True coefficients: {coef:.4f}. Linear regression coefficients: {lr.coef_[0]:.4f}. RANSAC coefficients: {ransac.estimator_.coef_[0]:.4f}"
|
| 60 |
+
|
| 61 |
+
fig, axes = plt.subplots()
|
| 62 |
+
|
| 63 |
+
axes.scatter(
|
| 64 |
+
X[inlier_mask], y[inlier_mask], color="yellowgreen", marker=".", label="Inliers"
|
| 65 |
+
)
|
| 66 |
+
axes.scatter(
|
| 67 |
+
X[outlier_mask], y[outlier_mask], color="gold", marker=".", label="Outliers"
|
| 68 |
+
)
|
| 69 |
+
axes.plot(line_X, line_y, color="navy", linewidth=2, label="Linear regressor")
|
| 70 |
+
axes.plot(
|
| 71 |
+
line_X,
|
| 72 |
+
line_y_ransac,
|
| 73 |
+
color="cornflowerblue",
|
| 74 |
+
linewidth=2,
|
| 75 |
+
label="RANSAC regressor",
|
| 76 |
+
)
|
| 77 |
+
axes.legend(loc="lower right")
|
| 78 |
+
axes.set_xlabel("Input")
|
| 79 |
+
axes.set_ylabel("Response")
|
| 80 |
+
|
| 81 |
+
return fig, text
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
with gr.Blocks(theme=theme) as demo:
|
| 86 |
+
gr.Markdown('''
|
| 87 |
+
<div>
|
| 88 |
+
<h1 style='text-align: center'>Robust linear model estimation using RANSAC</h1>
|
| 89 |
+
</div>
|
| 90 |
+
''')
|
| 91 |
+
gr.Markdown(model_card)
|
| 92 |
+
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/linear_model/plot_ransac.html#sphx-glr-auto-examples-linear-model-plot-ransac-py\">scikit-learn</a>")
|
| 93 |
+
n_samples = gr.Slider(minimum=500, maximum=5000, step=500, value=500, label="Number of samples")
|
| 94 |
+
n_outliers = gr.Slider(minimum=25, maximum=250, step=25, value=25, label="Number of outliers")
|
| 95 |
+
with gr.Row():
|
| 96 |
+
with gr.Column():
|
| 97 |
+
plot = gr.Plot(label="Compare Linear regressor and RANSAC")
|
| 98 |
+
with gr.Column():
|
| 99 |
+
results = gr.Textbox(label="Results")
|
| 100 |
+
|
| 101 |
+
n_samples.change(fn=do_train, inputs=[n_samples, n_outliers], outputs=[plot, results])
|
| 102 |
+
n_outliers.change(fn=do_train, inputs=[n_samples, n_outliers], outputs=[plot, results])
|
| 103 |
+
|
| 104 |
+
demo.launch()
|