Spaces:
Runtime error
Runtime error
| """ | |
| Demo is based on https://scikit-learn.org/stable/auto_examples/applications/plot_stock_market.html | |
| """ | |
| import sys | |
| import numpy as np | |
| import pandas as pd | |
| symbol_dict = { | |
| "TOT": "Total", | |
| "XOM": "Exxon", | |
| "CVX": "Chevron", | |
| "COP": "ConocoPhillips", | |
| "VLO": "Valero Energy", | |
| "MSFT": "Microsoft", | |
| "IBM": "IBM", | |
| "TWX": "Time Warner", | |
| "CMCSA": "Comcast", | |
| "CVC": "Cablevision", | |
| "YHOO": "Yahoo", | |
| "DELL": "Dell", | |
| "HPQ": "HP", | |
| "AMZN": "Amazon", | |
| "TM": "Toyota", | |
| "CAJ": "Canon", | |
| "SNE": "Sony", | |
| "F": "Ford", | |
| "HMC": "Honda", | |
| "NAV": "Navistar", | |
| "NOC": "Northrop Grumman", | |
| "BA": "Boeing", | |
| "KO": "Coca Cola", | |
| "MMM": "3M", | |
| "MCD": "McDonald's", | |
| "PEP": "Pepsi", | |
| "K": "Kellogg", | |
| "UN": "Unilever", | |
| "MAR": "Marriott", | |
| "PG": "Procter Gamble", | |
| "CL": "Colgate-Palmolive", | |
| "GE": "General Electrics", | |
| "WFC": "Wells Fargo", | |
| "JPM": "JPMorgan Chase", | |
| "AIG": "AIG", | |
| "AXP": "American express", | |
| "BAC": "Bank of America", | |
| "GS": "Goldman Sachs", | |
| "AAPL": "Apple", | |
| "SAP": "SAP", | |
| "CSCO": "Cisco", | |
| "TXN": "Texas Instruments", | |
| "XRX": "Xerox", | |
| "WMT": "Wal-Mart", | |
| "HD": "Home Depot", | |
| "GSK": "GlaxoSmithKline", | |
| "PFE": "Pfizer", | |
| "SNY": "Sanofi-Aventis", | |
| "NVS": "Novartis", | |
| "KMB": "Kimberly-Clark", | |
| "R": "Ryder", | |
| "GD": "General Dynamics", | |
| "RTN": "Raytheon", | |
| "CVS": "CVS", | |
| "CAT": "Caterpillar", | |
| "DD": "DuPont de Nemours", | |
| } | |
| symbols, names = np.array(sorted(symbol_dict.items())).T | |
| quotes = [] | |
| for symbol in symbols: | |
| print("Fetching quote history for %r" % symbol, file=sys.stderr) | |
| url = ( | |
| "https://raw.githubusercontent.com/scikit-learn/examples-data/" | |
| "master/financial-data/{}.csv" | |
| ) | |
| quotes.append(pd.read_csv(url.format(symbol))) | |
| close_prices = np.vstack([q["close"] for q in quotes]) | |
| open_prices = np.vstack([q["open"] for q in quotes]) | |
| # The daily variations of the quotes are what carry the most information | |
| variation = close_prices - open_prices | |
| from sklearn import covariance | |
| alphas = np.logspace(-1.5, 1, num=10) | |
| edge_model = covariance.GraphicalLassoCV(alphas=alphas) | |
| # standardize the time series: using correlations rather than covariance | |
| # former is more efficient for structurerelations rather than covariance | |
| # former is more efficient for structure recovery | |
| X = variation.copy().T | |
| X /= X.std(axis=0) | |
| edge_model.fit(X) | |
| from sklearn import cluster | |
| _, labels = cluster.affinity_propagation(edge_model.covariance_, random_state=0) | |
| n_labels = labels.max() | |
| # Finding a low-dimension embedding for visualization: find the best position of | |
| # the nodes (the stocks) on a 2D plane | |
| from sklearn import manifold | |
| node_position_model = manifold.LocallyLinearEmbedding( | |
| n_components=3, eigen_solver="dense", n_neighbors=6 | |
| ) | |
| embedding = node_position_model.fit_transform(X.T).T | |
| import matplotlib.pyplot as plt | |
| from matplotlib.collections import LineCollection | |
| import plotly.graph_objs as go | |
| def visualize_stocks(): | |
| # Plot the graph of partial correlations | |
| partial_correlations = edge_model.precision_.copy() | |
| d = 1 / np.sqrt(np.diag(partial_correlations)) | |
| partial_correlations *= d | |
| partial_correlations *= d[:, np.newaxis] | |
| non_zero = np.abs(np.triu(partial_correlations, k=1)) > 0.02 | |
| # Plot the nodes using the coordinates of our embedding | |
| scatter = go.Scatter3d( | |
| x=embedding[0], | |
| y=embedding[1], | |
| z=embedding[2], | |
| mode="markers", | |
| marker=dict(size=35 * d**2, color=labels, colorscale="Viridis"), | |
| hovertext=names, | |
| hovertemplate="%{hovertext}<br>", | |
| ) | |
| # # Plot the edges | |
| start_idx, end_idx = np.where(non_zero) | |
| # print(non_zero, non_zero.shape) | |
| # print(start_idx, start_idx.shape) | |
| segments = [ | |
| dict( | |
| x=[embedding[0][start], embedding[0][stop]], | |
| y=[embedding[1][start], embedding[1][stop]], | |
| z=[embedding[2][start], embedding[2][stop]], | |
| colorscale="Hot", | |
| color=np.abs(partial_correlations[start, stop]), | |
| line=dict(width=10 * np.abs(partial_correlations[start, stop])), | |
| ) | |
| for start, stop in zip(start_idx, end_idx) | |
| ] | |
| fig = go.Figure(data=[scatter]) | |
| for idx, segment in enumerate(segments, 1): | |
| fig.add_trace( | |
| go.Scatter3d( | |
| x=segment["x"], # x-coordinates of the line segment | |
| y=segment["y"], # y-coordinates of the line segment | |
| z=segment["z"], # z-coordinates of the line segment | |
| mode="lines", # type of the plot (line) | |
| line=dict( | |
| color=segment["color"], # color of the line | |
| colorscale=segment["colorscale"], # color scale of the line | |
| width=segment["line"]["width"] * 2.5, # width of the line | |
| ), | |
| hoverinfo="none", # disable hover for the line segments | |
| ), | |
| ) | |
| fig.data[idx].showlegend = False | |
| return fig | |
| import gradio as gr | |
| title = " π Visualizing the stock market structure π" | |
| with gr.Blocks(title=title) as demo: | |
| gr.Markdown(f"# {title}") | |
| gr.Markdown(" Data is of 56 stocks between the period of 2003 - 2008 <br>") | |
| gr.Markdown( | |
| " Stocks the move in together with each other are grouped together in a cluster <br>" | |
| ) | |
| gr.Markdown( | |
| " **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/applications/plot_stock_market.html)**" | |
| ) | |
| for i in range(n_labels + 1): | |
| gr.Markdown(f"Cluster {i + 1}: {', '.join(names[labels == i])}") | |
| btn = gr.Button(value="Visualize") | |
| btn.click( | |
| visualize_stocks, outputs=gr.Plot(label="Visualizing stock into clusters") | |
| ) | |
| demo.launch() | |