Spaces:
Runtime error
Runtime error
Adding visualization function
Browse files
app.py
CHANGED
|
@@ -105,7 +105,100 @@ _, labels = cluster.affinity_propagation(edge_model.covariance_, random_state=0)
|
|
| 105 |
n_labels = labels.max()
|
| 106 |
|
| 107 |
|
|
|
|
|
|
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
import gradio as gr
|
| 110 |
|
| 111 |
title = " π Visualizing the stock market structure π"
|
|
@@ -119,6 +212,8 @@ with gr.Blocks(title=title) as demo:
|
|
| 119 |
|
| 120 |
for i in range(n_labels + 1):
|
| 121 |
gr.Markdown( f"Cluster {i + 1}: {', '.join(names[labels == i])}")
|
| 122 |
-
|
|
|
|
|
|
|
| 123 |
gr.Markdown( f"## In progress")
|
| 124 |
demo.launch()
|
|
|
|
| 105 |
n_labels = labels.max()
|
| 106 |
|
| 107 |
|
| 108 |
+
# Finding a low-dimension embedding for visualization: find the best position of
|
| 109 |
+
# the nodes (the stocks) on a 2D plane
|
| 110 |
|
| 111 |
+
from sklearn import manifold
|
| 112 |
+
|
| 113 |
+
node_position_model = manifold.LocallyLinearEmbedding(
|
| 114 |
+
n_components=2, eigen_solver="dense", n_neighbors=6
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
embedding = node_position_model.fit_transform(X.T).T
|
| 118 |
+
|
| 119 |
+
import matplotlib.pyplot as plt
|
| 120 |
+
from matplotlib.collections import LineCollection
|
| 121 |
+
|
| 122 |
+
def visualize_stocks():
|
| 123 |
+
fig = plt.figure(1, facecolor="w", figsize=(10, 8))
|
| 124 |
+
plt.clf()
|
| 125 |
+
ax = plt.axes([0.0, 0.0, 1.0, 1.0])
|
| 126 |
+
plt.axis("off")
|
| 127 |
+
|
| 128 |
+
# Plot the graph of partial correlations
|
| 129 |
+
partial_correlations = edge_model.precision_.copy()
|
| 130 |
+
d = 1 / np.sqrt(np.diag(partial_correlations))
|
| 131 |
+
partial_correlations *= d
|
| 132 |
+
partial_correlations *= d[:, np.newaxis]
|
| 133 |
+
non_zero = np.abs(np.triu(partial_correlations, k=1)) > 0.02
|
| 134 |
+
|
| 135 |
+
# Plot the nodes using the coordinates of our embedding
|
| 136 |
+
plt.scatter(
|
| 137 |
+
embedding[0], embedding[1], s=100 * d**2, c=labels, cmap=plt.cm.nipy_spectral
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# Plot the edges
|
| 141 |
+
start_idx, end_idx = np.where(non_zero)
|
| 142 |
+
# a sequence of (*line0*, *line1*, *line2*), where::
|
| 143 |
+
# linen = (x0, y0), (x1, y1), ... (xm, ym)
|
| 144 |
+
segments = [
|
| 145 |
+
[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)
|
| 146 |
+
]
|
| 147 |
+
values = np.abs(partial_correlations[non_zero])
|
| 148 |
+
lc = LineCollection(
|
| 149 |
+
segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, 0.7 * values.max())
|
| 150 |
+
)
|
| 151 |
+
lc.set_array(values)
|
| 152 |
+
lc.set_linewidths(15 * values)
|
| 153 |
+
ax.add_collection(lc)
|
| 154 |
+
|
| 155 |
+
# Add a label to each node. The challenge here is that we want to
|
| 156 |
+
# position the labels to avoid overlap with other labels
|
| 157 |
+
for index, (name, label, (x, y)) in enumerate(zip(names, labels, embedding.T)):
|
| 158 |
+
|
| 159 |
+
dx = x - embedding[0]
|
| 160 |
+
dx[index] = 1
|
| 161 |
+
dy = y - embedding[1]
|
| 162 |
+
dy[index] = 1
|
| 163 |
+
this_dx = dx[np.argmin(np.abs(dy))]
|
| 164 |
+
this_dy = dy[np.argmin(np.abs(dx))]
|
| 165 |
+
if this_dx > 0:
|
| 166 |
+
horizontalalignment = "left"
|
| 167 |
+
x = x + 0.002
|
| 168 |
+
else:
|
| 169 |
+
horizontalalignment = "right"
|
| 170 |
+
x = x - 0.002
|
| 171 |
+
if this_dy > 0:
|
| 172 |
+
verticalalignment = "bottom"
|
| 173 |
+
y = y + 0.002
|
| 174 |
+
else:
|
| 175 |
+
verticalalignment = "top"
|
| 176 |
+
y = y - 0.002
|
| 177 |
+
plt.text(
|
| 178 |
+
x,
|
| 179 |
+
y,
|
| 180 |
+
name,
|
| 181 |
+
size=10,
|
| 182 |
+
horizontalalignment=horizontalalignment,
|
| 183 |
+
verticalalignment=verticalalignment,
|
| 184 |
+
bbox=dict(
|
| 185 |
+
facecolor="w",
|
| 186 |
+
edgecolor=plt.cm.nipy_spectral(label / float(n_labels)),
|
| 187 |
+
alpha=0.6,
|
| 188 |
+
),
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
plt.xlim(
|
| 192 |
+
embedding[0].min() - 0.15 * embedding[0].ptp(),
|
| 193 |
+
embedding[0].max() + 0.10 * embedding[0].ptp(),
|
| 194 |
+
)
|
| 195 |
+
plt.ylim(
|
| 196 |
+
embedding[1].min() - 0.03 * embedding[1].ptp(),
|
| 197 |
+
embedding[1].max() + 0.03 * embedding[1].ptp(),
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
return fig
|
| 201 |
+
|
| 202 |
import gradio as gr
|
| 203 |
|
| 204 |
title = " π Visualizing the stock market structure π"
|
|
|
|
| 212 |
|
| 213 |
for i in range(n_labels + 1):
|
| 214 |
gr.Markdown( f"Cluster {i + 1}: {', '.join(names[labels == i])}")
|
| 215 |
+
|
| 216 |
+
btn = gr.Button(value="Visualize")
|
| 217 |
+
btn.click(visualize_stocks, outputs= gr.Plot(label='Visualizing stock into clusters') )
|
| 218 |
gr.Markdown( f"## In progress")
|
| 219 |
demo.launch()
|