Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
First attempt
Browse files
app.py
CHANGED
|
@@ -1,8 +1,92 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
|
| 8 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
from sklearn.datasets import make_classification
|
| 4 |
+
from sklearn.model_selection import train_test_split
|
| 5 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 6 |
+
from sklearn.inspection import permutation_importance
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
|
| 12 |
+
def create_dataset():
|
| 13 |
+
X, y = make_classification(
|
| 14 |
+
n_samples=1000,
|
| 15 |
+
n_features=10,
|
| 16 |
+
n_informative=3,
|
| 17 |
+
n_redundant=0,
|
| 18 |
+
n_repeated=0,
|
| 19 |
+
n_classes=2,
|
| 20 |
+
random_state=0,
|
| 21 |
+
shuffle=False,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42)
|
| 25 |
+
return X_train, X_test, y_train, y_test
|
| 26 |
+
|
| 27 |
+
def train_model():
|
| 28 |
+
|
| 29 |
+
X_train, X_test, y_train, y_test = create_dataset()
|
| 30 |
+
|
| 31 |
+
feature_names = [f"feature {i}" for i in range(X_train.shape[1])]
|
| 32 |
+
forest = RandomForestClassifier(random_state=0)
|
| 33 |
+
forest.fit(X_train, y_train)
|
| 34 |
+
|
| 35 |
+
return forest, feature_names, X_test, y_test
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def plot_mean_decrease(clf, feature_names):
|
| 39 |
+
importances = clf.feature_importances_
|
| 40 |
+
std = np.std([tree.feature_importances_ for tree in clf.estimators_], axis=0)
|
| 41 |
+
|
| 42 |
+
forest_importances = pd.Series(importances, index=feature_names)
|
| 43 |
+
|
| 44 |
+
fig, ax = plt.subplots()
|
| 45 |
+
forest_importances.plot.bar(yerr=std, ax=ax)
|
| 46 |
+
ax.set_title("Feature importances using MDI")
|
| 47 |
+
ax.set_ylabel("Mean decrease in impurity")
|
| 48 |
+
fig.tight_layout()
|
| 49 |
+
|
| 50 |
+
return fig
|
| 51 |
+
|
| 52 |
+
def plot_feature_perm(clf, feature_names, X_test, y_test):
|
| 53 |
+
result = permutation_importance(
|
| 54 |
+
clf, X_test, y_test, n_repeats=10, random_state=42, n_jobs=2
|
| 55 |
+
)
|
| 56 |
+
forest_importances = pd.Series(result.importances_mean, index=feature_names)
|
| 57 |
+
|
| 58 |
+
fig, ax = plt.subplots()
|
| 59 |
+
forest_importances.plot.bar(yerr=result.importances_std, ax=ax)
|
| 60 |
+
ax.set_title("Feature importances using permutation on full model")
|
| 61 |
+
ax.set_ylabel("Mean accuracy decrease")
|
| 62 |
+
fig.tight_layout()
|
| 63 |
+
|
| 64 |
+
return fig
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
title = "Feature importances with a forest of trees 🌳"
|
| 69 |
+
description = """This example shows the use of a forest of trees to evaluate the importance of features on an artificial classification task.
|
| 70 |
+
The blue bars are the feature importances of the forest, along with their inter-trees variability represented by the error bars.
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
with gr.Blocks() as demo:
|
| 74 |
+
gr.Markdown(f"## {title}")
|
| 75 |
+
gr.Markdown(description)
|
| 76 |
+
|
| 77 |
+
# with gr.Column():
|
| 78 |
+
clf, feature_names, X_test, y_test = train_model()
|
| 79 |
+
|
| 80 |
+
with gr.Row():
|
| 81 |
+
plot = gr.Plot(plot_mean_decrease(clf, feature_names))
|
| 82 |
+
plot2 = gr.Plot(plot_feature_perm(clf, feature_names, X_test, y_test))
|
| 83 |
+
|
| 84 |
+
# input_data = gr.Dropdown(choices=feature_names, label="Feature", value="body-mass index")
|
| 85 |
+
# coef = gr.Textbox(label="Coefficients")
|
| 86 |
+
# mse = gr.Textbox(label="Mean squared error (MSE)")
|
| 87 |
+
# r2 = gr.Textbox(label="R2 score")
|
| 88 |
+
|
| 89 |
+
# input_data.change(fn=train_model, inputs=[input_data], outputs=[plot, coef, mse, r2], queue=False)
|
| 90 |
|
|
|
|
| 91 |
|
| 92 |
+
demo.launch(enable_queue=True)
|