Created the demo
Browse files- app.py +148 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import matplotlib
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
|
| 5 |
+
from sklearn.ensemble import BaggingRegressor
|
| 6 |
+
from sklearn.tree import DecisionTreeRegressor
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
matplotlib.use('agg')
|
| 11 |
+
|
| 12 |
+
# Generate data
|
| 13 |
+
def f(x):
|
| 14 |
+
x = x.ravel()
|
| 15 |
+
|
| 16 |
+
return np.exp(-(x**2)) + 1.5 * np.exp(-((x - 2) ** 2))
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def generate(n_samples, noise, n_repeat=1):
|
| 20 |
+
X = np.random.rand(n_samples) * 10 - 5
|
| 21 |
+
X = np.sort(X)
|
| 22 |
+
|
| 23 |
+
if n_repeat == 1:
|
| 24 |
+
y = f(X) + np.random.normal(0.0, noise, n_samples)
|
| 25 |
+
else:
|
| 26 |
+
y = np.zeros((n_samples, n_repeat))
|
| 27 |
+
|
| 28 |
+
for i in range(n_repeat):
|
| 29 |
+
y[:, i] = f(X) + np.random.normal(0.0, noise, n_samples)
|
| 30 |
+
|
| 31 |
+
X = X.reshape((n_samples, 1))
|
| 32 |
+
|
| 33 |
+
return X, y
|
| 34 |
+
|
| 35 |
+
def train_model(n_train, noise):
|
| 36 |
+
# Settings
|
| 37 |
+
n_repeat = 50 # Number of iterations for computing expectations
|
| 38 |
+
# n_train = 50 # Size of the training set
|
| 39 |
+
n_test = 1000 # Size of the test set
|
| 40 |
+
# noise = noise # Standard deviation of the noise
|
| 41 |
+
np.random.seed(0)
|
| 42 |
+
|
| 43 |
+
# Change this for exploring the bias-variance decomposition of other
|
| 44 |
+
# estimators. This should work well for estimators with high variance (e.g.,
|
| 45 |
+
# decision trees or KNN), but poorly for estimators with low variance (e.g.,
|
| 46 |
+
# linear models).
|
| 47 |
+
estimators = [
|
| 48 |
+
("Tree", DecisionTreeRegressor()),
|
| 49 |
+
("Bagging(Tree)", BaggingRegressor(DecisionTreeRegressor())),
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
n_estimators = len(estimators)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
X_train = []
|
| 56 |
+
y_train = []
|
| 57 |
+
|
| 58 |
+
for i in range(n_repeat):
|
| 59 |
+
X, y = generate(n_samples=n_train, noise=noise)
|
| 60 |
+
X_train.append(X)
|
| 61 |
+
y_train.append(y)
|
| 62 |
+
|
| 63 |
+
X_test, y_test = generate(n_samples=n_test, noise=noise, n_repeat=n_repeat)
|
| 64 |
+
|
| 65 |
+
fig = plt.figure(figsize=(10, 8))
|
| 66 |
+
|
| 67 |
+
out_str = ""
|
| 68 |
+
# Loop over estimators to compare
|
| 69 |
+
for n, (name, estimator) in enumerate(estimators):
|
| 70 |
+
# Compute predictions
|
| 71 |
+
y_predict = np.zeros((n_test, n_repeat))
|
| 72 |
+
|
| 73 |
+
for i in range(n_repeat):
|
| 74 |
+
estimator.fit(X_train[i], y_train[i])
|
| 75 |
+
y_predict[:, i] = estimator.predict(X_test)
|
| 76 |
+
|
| 77 |
+
# Bias^2 + Variance + Noise decomposition of the mean squared error
|
| 78 |
+
y_error = np.zeros(n_test)
|
| 79 |
+
|
| 80 |
+
for i in range(n_repeat):
|
| 81 |
+
for j in range(n_repeat):
|
| 82 |
+
y_error += (y_test[:, j] - y_predict[:, i]) ** 2
|
| 83 |
+
|
| 84 |
+
y_error /= n_repeat * n_repeat
|
| 85 |
+
|
| 86 |
+
y_noise = np.var(y_test, axis=1)
|
| 87 |
+
y_bias = (f(X_test) - np.mean(y_predict, axis=1)) ** 2
|
| 88 |
+
y_var = np.var(y_predict, axis=1)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
out_str += f"{name}: {np.mean(y_error):.4f} (error) = {np.mean(y_bias):.4f} (bias^2) + {np.mean(y_var):.4f} (var) + {np.mean(y_noise):.4f} (noise)\n"
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# Plot figures
|
| 95 |
+
plt.subplot(2, n_estimators, n + 1)
|
| 96 |
+
plt.plot(X_test, f(X_test), "b", label="$f(x)$")
|
| 97 |
+
plt.plot(X_train[0], y_train[0], ".b", label="LS ~ $y = f(x)+noise$")
|
| 98 |
+
|
| 99 |
+
for i in range(n_repeat):
|
| 100 |
+
if i == 0:
|
| 101 |
+
plt.plot(X_test, y_predict[:, i], "r", label=r"$\^y(x)$")
|
| 102 |
+
else:
|
| 103 |
+
plt.plot(X_test, y_predict[:, i], "r", alpha=0.05)
|
| 104 |
+
|
| 105 |
+
plt.plot(X_test, np.mean(y_predict, axis=1), "c", label=r"$\mathbb{E}_{LS} \^y(x)$")
|
| 106 |
+
|
| 107 |
+
plt.xlim([-5, 5])
|
| 108 |
+
plt.title(name)
|
| 109 |
+
|
| 110 |
+
if n == n_estimators - 1:
|
| 111 |
+
plt.legend(loc=(1.1, 0.5))
|
| 112 |
+
|
| 113 |
+
plt.subplot(2, n_estimators, n_estimators + n + 1)
|
| 114 |
+
plt.plot(X_test, y_error, "r", label="$error(x)$")
|
| 115 |
+
plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"),
|
| 116 |
+
plt.plot(X_test, y_var, "g", label="$variance(x)$"),
|
| 117 |
+
plt.plot(X_test, y_noise, "c", label="$noise(x)$")
|
| 118 |
+
|
| 119 |
+
plt.xlim([-5, 5])
|
| 120 |
+
plt.ylim([0, noise])
|
| 121 |
+
|
| 122 |
+
if n == n_estimators - 1:
|
| 123 |
+
plt.legend(loc=(1.1, 0.5))
|
| 124 |
+
|
| 125 |
+
plt.subplots_adjust(right=0.75)
|
| 126 |
+
|
| 127 |
+
return fig, out_str
|
| 128 |
+
|
| 129 |
+
title = "Single estimator versus bagging: bias-variance decomposition ⚖️"
|
| 130 |
+
description = "This example illustrates and compares the bias-variance decomposition of the expected mean squared error of a single estimator against a bagging ensemble. "
|
| 131 |
+
with gr.Blocks() as demo:
|
| 132 |
+
gr.Markdown(f"## {title}")
|
| 133 |
+
gr.Markdown(description)
|
| 134 |
+
|
| 135 |
+
num_samples = gr.Slider(minimum=50, maximum=200, step=50, value=50, label="Number of samples")
|
| 136 |
+
noise = gr.Slider(minimum=0.05, maximum=0.2, step=0.05, value=0.1, label="Noise")
|
| 137 |
+
|
| 138 |
+
with gr.Row():
|
| 139 |
+
with gr.Row():
|
| 140 |
+
with gr.Column(scale=2):
|
| 141 |
+
plot = gr.Plot()
|
| 142 |
+
with gr.Column(scale=1):
|
| 143 |
+
results = gr.Textbox(label="Results")
|
| 144 |
+
|
| 145 |
+
num_samples.change(fn=train_model, inputs=[num_samples, noise], outputs=[plot, results])
|
| 146 |
+
noise.change(fn=train_model, inputs=[num_samples, noise], outputs=[plot, results])
|
| 147 |
+
|
| 148 |
+
demo.launch(enable_queue=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
matplotlib
|
| 3 |
+
scikit-learn
|