Spaces:
Build error
Build error
Intital commit
Browse files- .gitignore +125 -0
- app.py +177 -0
- requirements.txt +2 -0
.gitignore
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
.coverage
|
| 3 |
+
.coverage.*
|
| 4 |
+
.cache
|
| 5 |
+
nosetests.xml
|
| 6 |
+
coverage.xml
|
| 7 |
+
*.cover
|
| 8 |
+
*.py,cover
|
| 9 |
+
.hypothesis/
|
| 10 |
+
.pytest_cache/
|
| 11 |
+
cover/
|
| 12 |
+
|
| 13 |
+
# Translations
|
| 14 |
+
*.mo
|
| 15 |
+
*.pot
|
| 16 |
+
|
| 17 |
+
# Django stuff:
|
| 18 |
+
*.log
|
| 19 |
+
local_settings.py
|
| 20 |
+
db.sqlite3
|
| 21 |
+
db.sqlite3-journal
|
| 22 |
+
|
| 23 |
+
# Flask stuff:
|
| 24 |
+
instance/
|
| 25 |
+
.webassets-cache
|
| 26 |
+
|
| 27 |
+
# Scrapy stuff:
|
| 28 |
+
.scrapy
|
| 29 |
+
|
| 30 |
+
# Sphinx documentation
|
| 31 |
+
docs/_build/
|
| 32 |
+
|
| 33 |
+
# PyBuilder
|
| 34 |
+
.pybuilder/
|
| 35 |
+
target/
|
| 36 |
+
|
| 37 |
+
# Jupyter Notebook
|
| 38 |
+
.ipynb_checkpoints
|
| 39 |
+
|
| 40 |
+
# IPython
|
| 41 |
+
profile_default/
|
| 42 |
+
ipython_config.py
|
| 43 |
+
|
| 44 |
+
# pyenv
|
| 45 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 46 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 47 |
+
# .python-version
|
| 48 |
+
|
| 49 |
+
# pipenv
|
| 50 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 51 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 52 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 53 |
+
# install all needed dependencies.
|
| 54 |
+
#Pipfile.lock
|
| 55 |
+
|
| 56 |
+
# poetry
|
| 57 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 58 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 59 |
+
# commonly ignored for libraries.
|
| 60 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 61 |
+
#poetry.lock
|
| 62 |
+
|
| 63 |
+
# pdm
|
| 64 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 65 |
+
#pdm.lock
|
| 66 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 67 |
+
# in version control.
|
| 68 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 69 |
+
.pdm.toml
|
| 70 |
+
|
| 71 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 72 |
+
__pypackages__/
|
| 73 |
+
|
| 74 |
+
# Celery stuff
|
| 75 |
+
celerybeat-schedule
|
| 76 |
+
celerybeat.pid
|
| 77 |
+
|
| 78 |
+
# SageMath parsed files
|
| 79 |
+
*.sage.py
|
| 80 |
+
|
| 81 |
+
# Environments
|
| 82 |
+
.env
|
| 83 |
+
.venv
|
| 84 |
+
env/
|
| 85 |
+
venv/
|
| 86 |
+
ENV/
|
| 87 |
+
env.bak/
|
| 88 |
+
venv.bak/
|
| 89 |
+
|
| 90 |
+
# Spyder project settings
|
| 91 |
+
.spyderproject
|
| 92 |
+
.spyproject
|
| 93 |
+
|
| 94 |
+
# Rope project settings
|
| 95 |
+
.ropeproject
|
| 96 |
+
|
| 97 |
+
# mkdocs documentation
|
| 98 |
+
/site
|
| 99 |
+
|
| 100 |
+
# mypy
|
| 101 |
+
.mypy_cache/
|
| 102 |
+
.dmypy.json
|
| 103 |
+
dmypy.json
|
| 104 |
+
|
| 105 |
+
# Pyre type checker
|
| 106 |
+
.pyre/
|
| 107 |
+
|
| 108 |
+
# pytype static type analyzer
|
| 109 |
+
.pytype/
|
| 110 |
+
|
| 111 |
+
# Cython debug symbols
|
| 112 |
+
cython_debug/
|
| 113 |
+
|
| 114 |
+
# PyCharm
|
| 115 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 116 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 117 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 118 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 119 |
+
#.idea/
|
| 120 |
+
|
| 121 |
+
# VS Code
|
| 122 |
+
.vscode/
|
| 123 |
+
|
| 124 |
+
# pycache
|
| 125 |
+
__pycache__/
|
app.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
| 5 |
+
from sklearn.linear_model import LogisticRegression
|
| 6 |
+
from sklearn.naive_bayes import GaussianNB
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def choose_model(model):
|
| 10 |
+
if model == "Logistic Regression":
|
| 11 |
+
return LogisticRegression(max_iter=1000, random_state=123)
|
| 12 |
+
elif model == "Random Forest":
|
| 13 |
+
return RandomForestClassifier(n_estimators=100, random_state=123)
|
| 14 |
+
elif model == "Gaussian Naive Bayes":
|
| 15 |
+
return GaussianNB()
|
| 16 |
+
else:
|
| 17 |
+
raise ValueError("Model is not supported.")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_proba_plots(
|
| 21 |
+
model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight
|
| 22 |
+
):
|
| 23 |
+
clf1 = choose_model(model_1)
|
| 24 |
+
clf2 = choose_model(model_2)
|
| 25 |
+
clf3 = choose_model(model_3)
|
| 26 |
+
X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
|
| 27 |
+
y = np.array([1, 1, 2, 2])
|
| 28 |
+
|
| 29 |
+
eclf = VotingClassifier(
|
| 30 |
+
estimators=[("clf1", clf1), ("clf2", clf2), ("clf3", clf3)],
|
| 31 |
+
voting="soft",
|
| 32 |
+
weights=[model_1_weight, model_2_weight, model_3_weight],
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# predict class probabilities for all classifiers
|
| 36 |
+
probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)]
|
| 37 |
+
|
| 38 |
+
# get class probabilities for the first sample in the dataset
|
| 39 |
+
class1_1 = [pr[0, 0] for pr in probas]
|
| 40 |
+
class2_1 = [pr[0, 1] for pr in probas]
|
| 41 |
+
|
| 42 |
+
# plotting
|
| 43 |
+
|
| 44 |
+
N = 4 # number of groups
|
| 45 |
+
ind = np.arange(N) # group positions
|
| 46 |
+
width = 0.35 # bar width
|
| 47 |
+
|
| 48 |
+
fig, ax = plt.subplots()
|
| 49 |
+
|
| 50 |
+
# bars for classifier 1-3
|
| 51 |
+
p1 = ax.bar(
|
| 52 |
+
ind, np.hstack(([class1_1[:-1], [0]])), width, color="green", edgecolor="k"
|
| 53 |
+
)
|
| 54 |
+
p2 = ax.bar(
|
| 55 |
+
ind + width,
|
| 56 |
+
np.hstack(([class2_1[:-1], [0]])),
|
| 57 |
+
width,
|
| 58 |
+
color="lightgreen",
|
| 59 |
+
edgecolor="k",
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# bars for VotingClassifier
|
| 63 |
+
ax.bar(ind, [0, 0, 0, class1_1[-1]], width, color="blue", edgecolor="k")
|
| 64 |
+
ax.bar(
|
| 65 |
+
ind + width, [0, 0, 0, class2_1[-1]], width, color="steelblue", edgecolor="k"
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# plot annotations
|
| 69 |
+
plt.axvline(2.8, color="k", linestyle="dashed")
|
| 70 |
+
ax.set_xticks(ind + width)
|
| 71 |
+
ax.set_xticklabels(
|
| 72 |
+
[
|
| 73 |
+
f"{model_2}\nweight {model_1_weight}",
|
| 74 |
+
f"{model_1}\nweight {model_2_weight}",
|
| 75 |
+
f"{model_3}\nweight {model_3_weight}",
|
| 76 |
+
"VotingClassifier\n(average probabilities)",
|
| 77 |
+
],
|
| 78 |
+
rotation=40,
|
| 79 |
+
ha="right",
|
| 80 |
+
)
|
| 81 |
+
plt.ylim([0, 1])
|
| 82 |
+
plt.title("Class probabilities for sample 1 by different classifiers")
|
| 83 |
+
plt.legend([p1[0], p2[0]], ["class 1", "class 2"], loc="upper left")
|
| 84 |
+
plt.tight_layout()
|
| 85 |
+
plt.show()
|
| 86 |
+
return fig
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
with gr.Blocks() as demo:
|
| 90 |
+
with gr.Row():
|
| 91 |
+
model_1 = gr.Dropdown(
|
| 92 |
+
[
|
| 93 |
+
"Logistic Regression",
|
| 94 |
+
"Random Forest",
|
| 95 |
+
"Gaussian Naive Bayes",
|
| 96 |
+
],
|
| 97 |
+
label="Model 1",
|
| 98 |
+
value="Logistic Regression",
|
| 99 |
+
)
|
| 100 |
+
model_2 = gr.Dropdown(
|
| 101 |
+
[
|
| 102 |
+
"Logistic Regression",
|
| 103 |
+
"Random Forest",
|
| 104 |
+
"Gaussian Naive Bayes",
|
| 105 |
+
],
|
| 106 |
+
label="Model 2",
|
| 107 |
+
value="Random Forest",
|
| 108 |
+
)
|
| 109 |
+
model_3 = gr.Dropdown(
|
| 110 |
+
[
|
| 111 |
+
"Logistic Regression",
|
| 112 |
+
"Random Forest",
|
| 113 |
+
"Gaussian Naive Bayes",
|
| 114 |
+
],
|
| 115 |
+
label="Model 3",
|
| 116 |
+
value="Gaussian Naive Bayes",
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
with gr.Row():
|
| 120 |
+
model_1_weight = gr.Slider(
|
| 121 |
+
minimum=1, maximum=10, value=1, label="Model 1 Weight", step=1
|
| 122 |
+
)
|
| 123 |
+
model_2_weight = gr.Slider(
|
| 124 |
+
minimum=1, maximum=10, value=1, label="Model 2 Weight", step=1
|
| 125 |
+
)
|
| 126 |
+
model_3_weight = gr.Slider(
|
| 127 |
+
minimum=1, maximum=10, value=5, label="Model 3 Weight", step=1
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
proba_plots = gr.Plot()
|
| 131 |
+
|
| 132 |
+
model_1.change(
|
| 133 |
+
get_proba_plots,
|
| 134 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
| 135 |
+
proba_plots,
|
| 136 |
+
queue=False,
|
| 137 |
+
)
|
| 138 |
+
model_2.change(
|
| 139 |
+
get_proba_plots,
|
| 140 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
| 141 |
+
proba_plots,
|
| 142 |
+
queue=False,
|
| 143 |
+
)
|
| 144 |
+
model_3.change(
|
| 145 |
+
get_proba_plots,
|
| 146 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
| 147 |
+
proba_plots,
|
| 148 |
+
queue=False,
|
| 149 |
+
)
|
| 150 |
+
model_1_weight.change(
|
| 151 |
+
get_proba_plots,
|
| 152 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
| 153 |
+
proba_plots,
|
| 154 |
+
queue=False,
|
| 155 |
+
)
|
| 156 |
+
model_2_weight.change(
|
| 157 |
+
get_proba_plots,
|
| 158 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
| 159 |
+
proba_plots,
|
| 160 |
+
queue=False,
|
| 161 |
+
)
|
| 162 |
+
model_3_weight.change(
|
| 163 |
+
get_proba_plots,
|
| 164 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
| 165 |
+
proba_plots,
|
| 166 |
+
queue=False,
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
demo.load(
|
| 170 |
+
get_proba_plots,
|
| 171 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
| 172 |
+
proba_plots,
|
| 173 |
+
queue=False,
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
if __name__ == "__main__":
|
| 177 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scikit-learn==1.2.2
|
| 2 |
+
matplotlib==3.7.1
|