Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| """Residual vector quantizer implementation.""" | |
| from dataclasses import dataclass, field | |
| import math | |
| import typing as tp | |
| import torch | |
| from torch import nn | |
| # from .core_vq import ResidualVectorQuantization | |
| from .core_vq_lsx_version import ResidualVectorQuantization | |
| class QuantizedResult: | |
| quantized: torch.Tensor | |
| codes: torch.Tensor | |
| bandwidth: torch.Tensor # bandwidth in kb/s used, per batch item. | |
| penalty: tp.Optional[torch.Tensor] = None | |
| metrics: dict = field(default_factory=dict) | |
| class ResidualVectorQuantizer(nn.Module): | |
| """Residual Vector Quantizer. | |
| Args: | |
| dimension (int): Dimension of the codebooks. | |
| n_q (int): Number of residual vector quantizers used. | |
| bins (int): Codebook size. | |
| decay (float): Decay for exponential moving average over the codebooks. | |
| kmeans_init (bool): Whether to use kmeans to initialize the codebooks. | |
| kmeans_iters (int): Number of iterations used for kmeans initialization. | |
| threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
| that have an exponential moving average cluster size less than the specified threshold with | |
| randomly selected vector from the current batch. | |
| """ | |
| def __init__( | |
| self, | |
| dimension: int = 256, | |
| codebook_dim: int = None, | |
| n_q: int = 8, | |
| bins: int = 1024, | |
| decay: float = 0.99, | |
| kmeans_init: bool = True, | |
| kmeans_iters: int = 50, | |
| threshold_ema_dead_code: int = 2, | |
| ): | |
| super().__init__() | |
| self.n_q = n_q | |
| self.dimension = dimension | |
| self.codebook_dim = codebook_dim | |
| self.bins = bins | |
| self.decay = decay | |
| self.kmeans_init = kmeans_init | |
| self.kmeans_iters = kmeans_iters | |
| self.threshold_ema_dead_code = threshold_ema_dead_code | |
| self.vq = ResidualVectorQuantization( | |
| dim=self.dimension, | |
| codebook_dim=self.codebook_dim, | |
| codebook_size=self.bins, | |
| num_quantizers=self.n_q, | |
| decay=self.decay, | |
| kmeans_init=self.kmeans_init, | |
| kmeans_iters=self.kmeans_iters, | |
| threshold_ema_dead_code=self.threshold_ema_dead_code, | |
| ) | |
| def forward(self, x: torch.Tensor, sample_rate: int, bandwidth: tp.Optional[float] = None): # -> QuantizedResult: | |
| """Residual vector quantization on the given input tensor. | |
| Args: | |
| x (torch.Tensor): Input tensor. | |
| sample_rate (int): Sample rate of the input tensor. | |
| bandwidth (float): Target bandwidth. | |
| Returns: | |
| QuantizedResult: | |
| The quantized (or approximately quantized) representation with | |
| the associated bandwidth and any penalty term for the loss. | |
| """ | |
| bw_per_q = self.get_bandwidth_per_quantizer(sample_rate) | |
| n_q = self.get_num_quantizers_for_bandwidth(sample_rate, bandwidth) | |
| quantized, codes, commit_loss = self.vq(x, n_q=n_q) | |
| bw = torch.tensor(n_q * bw_per_q).to(x) | |
| return quantized, codes, bw, torch.mean(commit_loss) | |
| # return QuantizedResult(quantized, codes, bw, penalty=torch.mean(commit_loss)) | |
| def get_num_quantizers_for_bandwidth(self, sample_rate: int, bandwidth: tp.Optional[float] = None) -> int: | |
| """Return n_q based on specified target bandwidth.""" | |
| bw_per_q = self.get_bandwidth_per_quantizer(sample_rate) | |
| n_q = self.n_q | |
| if bandwidth and bandwidth > 0.0: | |
| n_q = int(max(1, math.floor(bandwidth / bw_per_q))) | |
| return n_q | |
| def get_bandwidth_per_quantizer(self, sample_rate: int): | |
| """Return bandwidth per quantizer for a given input sample rate.""" | |
| return math.log2(self.bins) * sample_rate / 1000 | |
| def encode(self, x: torch.Tensor, sample_rate: int, bandwidth: tp.Optional[float] = None) -> torch.Tensor: | |
| """Encode a given input tensor with the specified sample rate at the given bandwidth. | |
| The RVQ encode method sets the appropriate number of quantizer to use | |
| and returns indices for each quantizer. | |
| """ | |
| n_q = self.get_num_quantizers_for_bandwidth(sample_rate, bandwidth) | |
| codes = self.vq.encode(x, n_q=n_q) | |
| return codes | |
| def decode(self, codes: torch.Tensor) -> torch.Tensor: | |
| """Decode the given codes to the quantized representation.""" | |
| quantized = self.vq.decode(codes) | |
| return quantized | |