Update app.py
Browse files
app.py
CHANGED
|
@@ -28,55 +28,50 @@ app.add_middleware(
|
|
| 28 |
|
| 29 |
@app.get("/api/results")
|
| 30 |
async def get_results():
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
print("Columns:", df.columns)
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# Group by model_id and agent_action_type to create the expected structure
|
| 50 |
-
for (model_id, agent_action_type), group in df.groupby(['model_id', 'agent_action_type']):
|
| 51 |
-
# Calculate scores for each benchmark
|
| 52 |
-
benchmark_scores = {}
|
| 53 |
-
benchmarks = ['GAIA', 'MATH', 'SimpleQA']
|
| 54 |
-
|
| 55 |
-
for benchmark in benchmarks:
|
| 56 |
-
benchmark_group = group[group['benchmark'] == benchmark]
|
| 57 |
-
if not benchmark_group.empty:
|
| 58 |
-
benchmark_scores[benchmark] = benchmark_group['score'].mean() * 100 # Convert to percentage
|
| 59 |
-
|
| 60 |
-
# Calculate average if we have at least one benchmark score
|
| 61 |
-
if benchmark_scores:
|
| 62 |
-
benchmark_scores['Average'] = sum(benchmark_scores.values()) / len(benchmark_scores)
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
except Exception as e:
|
| 77 |
-
# Print the full error traceback to your logs
|
| 78 |
-
print("Error occurred:", str(e))
|
| 79 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 80 |
|
| 81 |
|
| 82 |
|
|
|
|
| 28 |
|
| 29 |
@app.get("/api/results")
|
| 30 |
async def get_results():
|
| 31 |
+
# Load the dataset
|
| 32 |
+
dataset = load_dataset("smolagents/results")
|
| 33 |
+
# Convert to list for processing
|
| 34 |
+
df = dataset["train"].to_pandas()
|
| 35 |
+
|
| 36 |
+
# Log some info to help debug
|
| 37 |
+
print("Dataset loaded, shape:", df.shape)
|
| 38 |
+
print("Columns:", df.columns)
|
|
|
|
| 39 |
|
| 40 |
+
# Process the data to match frontend expectations
|
| 41 |
+
result = []
|
| 42 |
+
# Ensure we have the expected columns
|
| 43 |
+
expected_columns = ['model_id', 'agent_action_type', 'source', 'acc']
|
| 44 |
+
for col in expected_columns:
|
| 45 |
+
if col not in df.columns:
|
| 46 |
+
print(f"Warning: Column {col} not found in dataset")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# Group by model_id and agent_action_type to create the expected structure
|
| 49 |
+
for (model_id, agent_action_type), group in df.groupby(['model_id', 'agent_action_type']):
|
| 50 |
+
# Calculate scores for each benchmark
|
| 51 |
+
benchmark_scores = {}
|
| 52 |
+
benchmarks = ['GAIA', 'MATH', 'SimpleQA']
|
| 53 |
+
|
| 54 |
+
for benchmark in benchmarks:
|
| 55 |
+
benchmark_group = group[group['source'] == benchmark]
|
| 56 |
+
if not benchmark_group.empty:
|
| 57 |
+
benchmark_scores[benchmark] = benchmark_group['acc'].mean() * 100 # Convert to percentage
|
| 58 |
+
|
| 59 |
+
# Calculate average if we have at least one benchmark score
|
| 60 |
+
if benchmark_scores:
|
| 61 |
+
benchmark_scores['Average'] = sum(benchmark_scores.values()) / len(benchmark_scores)
|
| 62 |
|
| 63 |
+
# Add entry to result
|
| 64 |
+
result.append({
|
| 65 |
+
'model_id': model_id,
|
| 66 |
+
'agent_action_type': agent_action_type,
|
| 67 |
+
'scores': benchmark_scores
|
| 68 |
+
})
|
| 69 |
+
|
| 70 |
+
print(f"Processed {len(result)} entries for the frontend")
|
| 71 |
+
# Return the properly formatted data as a JSON response
|
| 72 |
+
return result
|
| 73 |
+
return data
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
|
| 77 |
|