Update app.py
Browse files
app.py
CHANGED
|
@@ -5,10 +5,13 @@ from PIL import Image, ImageDraw, ImageFont
|
|
| 5 |
import torch
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
import io
|
|
|
|
| 8 |
|
| 9 |
# ===== CONFIG =====
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
|
|
|
|
|
|
| 12 |
model_repo_id = "stabilityai/sdxl-turbo"
|
| 13 |
pipe = DiffusionPipeline.from_pretrained(
|
| 14 |
model_repo_id,
|
|
@@ -17,108 +20,161 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
| 17 |
)
|
| 18 |
pipe.to(device)
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
-
|
| 22 |
-
IMAGE_HEIGHT = 768
|
| 23 |
WATERMARK_TEXT = "SelamGPT"
|
| 24 |
|
| 25 |
-
# ===== WATERMARK FUNCTION =====
|
| 26 |
def add_watermark(image):
|
| 27 |
-
|
| 28 |
-
font_size = int(image.width * 0.03)
|
| 29 |
try:
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
def generate(
|
| 42 |
prompt,
|
| 43 |
-
negative_prompt,
|
| 44 |
-
seed,
|
| 45 |
-
randomize_seed,
|
| 46 |
-
guidance_scale,
|
| 47 |
-
num_inference_steps,
|
| 48 |
progress=gr.Progress(track_tqdm=True),
|
| 49 |
):
|
| 50 |
if not prompt.strip():
|
| 51 |
return None, "⚠️ Please enter a prompt"
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
| 54 |
seed = random.randint(0, MAX_SEED)
|
| 55 |
-
|
| 56 |
generator = torch.manual_seed(seed)
|
|
|
|
|
|
|
| 57 |
result = pipe(
|
| 58 |
prompt=prompt,
|
| 59 |
negative_prompt=negative_prompt,
|
| 60 |
-
width=
|
| 61 |
-
height=
|
| 62 |
guidance_scale=guidance_scale,
|
| 63 |
-
num_inference_steps=num_inference_steps,
|
| 64 |
generator=generator,
|
| 65 |
).images[0]
|
| 66 |
-
|
|
|
|
| 67 |
watermarked = add_watermark(result)
|
| 68 |
buffer = io.BytesIO()
|
| 69 |
-
watermarked.
|
| 70 |
buffer.seek(0)
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
# ===== EXAMPLES =====
|
| 74 |
examples = [
|
| 75 |
-
"
|
| 76 |
-
"
|
| 77 |
-
"
|
| 78 |
]
|
| 79 |
|
| 80 |
-
# ===== INTERFACE =====
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
prompt = gr.Textbox(
|
| 89 |
-
label="
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
scale=3
|
| 94 |
)
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
if __name__ == "__main__":
|
| 124 |
-
demo.
|
|
|
|
|
|
| 5 |
import torch
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
import io
|
| 8 |
+
import time
|
| 9 |
|
| 10 |
# ===== CONFIG =====
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
| 13 |
+
|
| 14 |
+
# Using SDXL Turbo for fastest generation
|
| 15 |
model_repo_id = "stabilityai/sdxl-turbo"
|
| 16 |
pipe = DiffusionPipeline.from_pretrained(
|
| 17 |
model_repo_id,
|
|
|
|
| 20 |
)
|
| 21 |
pipe.to(device)
|
| 22 |
|
| 23 |
+
# Enable memory efficient attention and channels last for better performance
|
| 24 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 25 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
| 26 |
+
|
| 27 |
MAX_SEED = np.iinfo(np.int32).max
|
| 28 |
+
IMAGE_SIZE = 1024 # Same as original code
|
|
|
|
| 29 |
WATERMARK_TEXT = "SelamGPT"
|
| 30 |
|
| 31 |
+
# ===== OPTIMIZED WATERMARK FUNCTION =====
|
| 32 |
def add_watermark(image):
|
| 33 |
+
"""Optimized watermark function matching original style"""
|
|
|
|
| 34 |
try:
|
| 35 |
+
draw = ImageDraw.Draw(image)
|
| 36 |
+
font_size = 24 # Fixed size as in original
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
font = ImageFont.truetype("Roboto-Bold.ttf", font_size)
|
| 40 |
+
except:
|
| 41 |
+
font = ImageFont.load_default(font_size)
|
| 42 |
+
|
| 43 |
+
text_width = draw.textlength(WATERMARK_TEXT, font=font)
|
| 44 |
+
x = image.width - text_width - 10
|
| 45 |
+
y = image.height - 34
|
| 46 |
+
|
| 47 |
+
# Shadow effect
|
| 48 |
+
draw.text((x+1, y+1), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 128))
|
| 49 |
+
draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 255, 255))
|
| 50 |
+
|
| 51 |
+
return image
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f"Watermark error: {str(e)}")
|
| 54 |
+
return image
|
| 55 |
+
|
| 56 |
+
# ===== ULTRA-FAST INFERENCE FUNCTION =====
|
| 57 |
def generate(
|
| 58 |
prompt,
|
| 59 |
+
negative_prompt="",
|
| 60 |
+
seed=None,
|
| 61 |
+
randomize_seed=True,
|
| 62 |
+
guidance_scale=0.0, # 0.0 for turbo models
|
| 63 |
+
num_inference_steps=1, # Can be as low as 1-2 for turbo
|
| 64 |
progress=gr.Progress(track_tqdm=True),
|
| 65 |
):
|
| 66 |
if not prompt.strip():
|
| 67 |
return None, "⚠️ Please enter a prompt"
|
| 68 |
|
| 69 |
+
start_time = time.time()
|
| 70 |
+
|
| 71 |
+
# Seed handling
|
| 72 |
+
if randomize_seed or seed is None:
|
| 73 |
seed = random.randint(0, MAX_SEED)
|
| 74 |
+
|
| 75 |
generator = torch.manual_seed(seed)
|
| 76 |
+
|
| 77 |
+
# Ultra-fast generation with minimal steps
|
| 78 |
result = pipe(
|
| 79 |
prompt=prompt,
|
| 80 |
negative_prompt=negative_prompt,
|
| 81 |
+
width=IMAGE_SIZE,
|
| 82 |
+
height=IMAGE_SIZE,
|
| 83 |
guidance_scale=guidance_scale,
|
| 84 |
+
num_inference_steps=max(1, num_inference_steps), # Minimum 1 step
|
| 85 |
generator=generator,
|
| 86 |
).images[0]
|
| 87 |
+
|
| 88 |
+
# Optimized watermark and JPG conversion
|
| 89 |
watermarked = add_watermark(result)
|
| 90 |
buffer = io.BytesIO()
|
| 91 |
+
watermarked.save(buffer, format="JPEG", quality=85, optimize=True)
|
| 92 |
buffer.seek(0)
|
| 93 |
+
|
| 94 |
+
gen_time = time.time() - start_time
|
| 95 |
+
status = f"✔️ Generated in {gen_time:.2f}s | Seed: {seed}"
|
| 96 |
+
|
| 97 |
+
return Image.open(buffer), status
|
| 98 |
|
| 99 |
# ===== EXAMPLES =====
|
| 100 |
examples = [
|
| 101 |
+
["An ancient Aksumite warrior in cyberpunk armor, 4k detailed"],
|
| 102 |
+
["Traditional Ethiopian coffee ceremony in zero gravity"],
|
| 103 |
+
["Portrait of a Habesha queen with golden jewelry"]
|
| 104 |
]
|
| 105 |
|
| 106 |
+
# ===== OPTIMIZED INTERFACE =====
|
| 107 |
+
theme = gr.themes.Default(
|
| 108 |
+
primary_hue="emerald",
|
| 109 |
+
secondary_hue="amber",
|
| 110 |
+
font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]
|
| 111 |
+
)
|
| 112 |
|
| 113 |
+
with gr.Blocks(theme=theme, title="SelamGPT Turbo Generator") as demo:
|
| 114 |
+
gr.Markdown("""
|
| 115 |
+
# 🎨 SelamGPT Turbo Image Generator
|
| 116 |
+
*Ultra-fast 1024x1024 image generation with SDXL-Turbo*
|
| 117 |
+
""")
|
| 118 |
+
|
| 119 |
+
with gr.Row():
|
| 120 |
+
with gr.Column(scale=3):
|
| 121 |
prompt = gr.Textbox(
|
| 122 |
+
label="Describe your image",
|
| 123 |
+
placeholder="A futuristic Ethiopian city with flying cars...",
|
| 124 |
+
lines=3,
|
| 125 |
+
max_lines=5
|
|
|
|
| 126 |
)
|
| 127 |
+
with gr.Row():
|
| 128 |
+
generate_btn = gr.Button("Generate Image", variant="primary")
|
| 129 |
+
clear_btn = gr.Button("Clear")
|
| 130 |
+
|
| 131 |
+
gr.Examples(
|
| 132 |
+
examples=examples,
|
| 133 |
+
inputs=[prompt]
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
with gr.Column(scale=2):
|
| 137 |
+
output_image = gr.Image(
|
| 138 |
+
label="Generated Image",
|
| 139 |
+
type="pil",
|
| 140 |
+
format="jpeg",
|
| 141 |
+
height=512
|
| 142 |
+
)
|
| 143 |
+
status_output = gr.Textbox(
|
| 144 |
+
label="Status",
|
| 145 |
+
interactive=False
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
| 149 |
+
negative_prompt = gr.Textbox(
|
| 150 |
+
label="Negative Prompt",
|
| 151 |
+
placeholder="What to avoid (optional)",
|
| 152 |
+
max_lines=1
|
| 153 |
)
|
| 154 |
+
with gr.Row():
|
| 155 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 156 |
+
seed = gr.Number(label="Seed", value=0, precision=0)
|
| 157 |
+
guidance_scale = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Guidance Scale")
|
| 158 |
+
num_inference_steps = gr.Slider(1, 4, value=1, step=1, label="Inference Steps")
|
| 159 |
+
|
| 160 |
+
generate_btn.click(
|
| 161 |
+
fn=generate,
|
| 162 |
+
inputs=[
|
| 163 |
+
prompt,
|
| 164 |
+
negative_prompt,
|
| 165 |
+
seed,
|
| 166 |
+
randomize_seed,
|
| 167 |
+
guidance_scale,
|
| 168 |
+
num_inference_steps
|
| 169 |
+
],
|
| 170 |
+
outputs=[output_image, status_output]
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
clear_btn.click(
|
| 174 |
+
fn=lambda: [None, ""],
|
| 175 |
+
outputs=[output_image, status_output]
|
| 176 |
+
)
|
| 177 |
|
| 178 |
if __name__ == "__main__":
|
| 179 |
+
demo.queue(max_size=4) # Increased queue for better throughput
|
| 180 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|