Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange | |
| from diffusers.utils import BaseOutput, is_torch_version | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.models.attention_processor import SpatialNorm | |
| from .modeling_block import ( | |
| UNetMidBlock2D, | |
| CausalUNetMidBlock2D, | |
| get_down_block, | |
| get_up_block, | |
| get_input_layer, | |
| get_output_layer, | |
| ) | |
| from .modeling_resnet import ( | |
| Downsample2D, | |
| Upsample2D, | |
| TemporalDownsample2x, | |
| TemporalUpsample2x, | |
| ) | |
| from .modeling_causal_conv import CausalConv3d, CausalGroupNorm | |
| class DecoderOutput(BaseOutput): | |
| r""" | |
| Output of decoding method. | |
| Args: | |
| sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| The decoded output sample from the last layer of the model. | |
| """ | |
| sample: torch.FloatTensor | |
| class CausalVaeEncoder(nn.Module): | |
| r""" | |
| The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. | |
| Args: | |
| in_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| out_channels (`int`, *optional*, defaults to 3): | |
| The number of output channels. | |
| down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
| The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available | |
| options. | |
| block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
| The number of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): | |
| The number of layers per block. | |
| norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups for normalization. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): | |
| The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
| double_z (`bool`, *optional*, defaults to `True`): | |
| Whether to double the number of output channels for the last block. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| down_block_types: Tuple[str, ...] = ("DownEncoderBlockCausal3D",), | |
| spatial_down_sample: Tuple[bool, ...] = (True,), | |
| temporal_down_sample: Tuple[bool, ...] = (False,), | |
| block_out_channels: Tuple[int, ...] = (64,), | |
| layers_per_block: Tuple[int, ...] = (2,), | |
| norm_num_groups: int = 32, | |
| act_fn: str = "silu", | |
| double_z: bool = True, | |
| block_dropout: Tuple[int, ...] = (0.0,), | |
| mid_block_add_attention=True, | |
| ): | |
| super().__init__() | |
| self.layers_per_block = layers_per_block | |
| self.conv_in = CausalConv3d( | |
| in_channels, | |
| block_out_channels[0], | |
| kernel_size=3, | |
| stride=1, | |
| ) | |
| self.mid_block = None | |
| self.down_blocks = nn.ModuleList([]) | |
| # down | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=self.layers_per_block[i], | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| add_spatial_downsample=spatial_down_sample[i], | |
| add_temporal_downsample=temporal_down_sample[i], | |
| resnet_eps=1e-6, | |
| downsample_padding=0, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| attention_head_dim=output_channel, | |
| temb_channels=None, | |
| dropout=block_dropout[i], | |
| ) | |
| self.down_blocks.append(down_block) | |
| # mid | |
| self.mid_block = CausalUNetMidBlock2D( | |
| in_channels=block_out_channels[-1], | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=1, | |
| resnet_time_scale_shift="default", | |
| attention_head_dim=block_out_channels[-1], | |
| resnet_groups=norm_num_groups, | |
| temb_channels=None, | |
| add_attention=mid_block_add_attention, | |
| dropout=block_dropout[-1], | |
| ) | |
| # out | |
| self.conv_norm_out = CausalGroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) | |
| self.conv_act = nn.SiLU() | |
| conv_out_channels = 2 * out_channels if double_z else out_channels | |
| self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3, stride=1) | |
| self.gradient_checkpointing = False | |
| def forward(self, sample: torch.FloatTensor, is_init_image=True, temporal_chunk=False) -> torch.FloatTensor: | |
| r"""The forward method of the `Encoder` class.""" | |
| sample = self.conv_in(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| # down | |
| if is_torch_version(">=", "1.11.0"): | |
| for down_block in self.down_blocks: | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(down_block), sample, is_init_image, | |
| temporal_chunk, use_reentrant=False | |
| ) | |
| # middle | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(self.mid_block), sample, is_init_image, | |
| temporal_chunk, use_reentrant=False | |
| ) | |
| else: | |
| for down_block in self.down_blocks: | |
| sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample, is_init_image, temporal_chunk) | |
| # middle | |
| sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, is_init_image, temporal_chunk) | |
| else: | |
| # down | |
| for down_block in self.down_blocks: | |
| sample = down_block(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
| # middle | |
| sample = self.mid_block(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
| # post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
| return sample | |
| class CausalVaeDecoder(nn.Module): | |
| r""" | |
| The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. | |
| Args: | |
| in_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| out_channels (`int`, *optional*, defaults to 3): | |
| The number of output channels. | |
| up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
| The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. | |
| block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
| The number of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): | |
| The number of layers per block. | |
| norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups for normalization. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): | |
| The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
| norm_type (`str`, *optional*, defaults to `"group"`): | |
| The normalization type to use. Can be either `"group"` or `"spatial"`. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| up_block_types: Tuple[str, ...] = ("UpDecoderBlockCausal3D",), | |
| spatial_up_sample: Tuple[bool, ...] = (True,), | |
| temporal_up_sample: Tuple[bool, ...] = (False,), | |
| block_out_channels: Tuple[int, ...] = (64,), | |
| layers_per_block: Tuple[int, ...] = (2,), | |
| norm_num_groups: int = 32, | |
| act_fn: str = "silu", | |
| mid_block_add_attention=True, | |
| interpolate: bool = True, | |
| block_dropout: Tuple[int, ...] = (0.0,), | |
| ): | |
| super().__init__() | |
| self.layers_per_block = layers_per_block | |
| self.conv_in = CausalConv3d( | |
| in_channels, | |
| block_out_channels[-1], | |
| kernel_size=3, | |
| stride=1, | |
| ) | |
| self.mid_block = None | |
| self.up_blocks = nn.ModuleList([]) | |
| # mid | |
| self.mid_block = CausalUNetMidBlock2D( | |
| in_channels=block_out_channels[-1], | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=1, | |
| resnet_time_scale_shift="default", | |
| attention_head_dim=block_out_channels[-1], | |
| resnet_groups=norm_num_groups, | |
| temb_channels=None, | |
| add_attention=mid_block_add_attention, | |
| dropout=block_dropout[-1], | |
| ) | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| up_block = get_up_block( | |
| up_block_type, | |
| num_layers=self.layers_per_block[i], | |
| in_channels=prev_output_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=None, | |
| add_spatial_upsample=spatial_up_sample[i], | |
| add_temporal_upsample=temporal_up_sample[i], | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| attention_head_dim=output_channel, | |
| temb_channels=None, | |
| resnet_time_scale_shift='default', | |
| interpolate=interpolate, | |
| dropout=block_dropout[i], | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| self.conv_norm_out = CausalGroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3, stride=1) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| is_init_image=True, | |
| temporal_chunk=False, | |
| ) -> torch.FloatTensor: | |
| r"""The forward method of the `Decoder` class.""" | |
| sample = self.conv_in(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
| upscale_dtype = next(iter(self.up_blocks.parameters())).dtype | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| if is_torch_version(">=", "1.11.0"): | |
| # middle | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(self.mid_block), | |
| sample, | |
| is_init_image=is_init_image, | |
| temporal_chunk=temporal_chunk, | |
| use_reentrant=False, | |
| ) | |
| sample = sample.to(upscale_dtype) | |
| # up | |
| for up_block in self.up_blocks: | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(up_block), | |
| sample, | |
| is_init_image=is_init_image, | |
| temporal_chunk=temporal_chunk, | |
| use_reentrant=False, | |
| ) | |
| else: | |
| # middle | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(self.mid_block), sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk, | |
| ) | |
| sample = sample.to(upscale_dtype) | |
| # up | |
| for up_block in self.up_blocks: | |
| sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, | |
| is_init_image=is_init_image, temporal_chunk=temporal_chunk,) | |
| else: | |
| # middle | |
| sample = self.mid_block(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
| sample = sample.to(upscale_dtype) | |
| # up | |
| for up_block in self.up_blocks: | |
| sample = up_block(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk,) | |
| # post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
| return sample | |
| class DiagonalGaussianDistribution(object): | |
| def __init__(self, parameters: torch.Tensor, deterministic: bool = False): | |
| self.parameters = parameters | |
| self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) | |
| self.logvar = torch.clamp(self.logvar, -30.0, 20.0) | |
| self.deterministic = deterministic | |
| self.std = torch.exp(0.5 * self.logvar) | |
| self.var = torch.exp(self.logvar) | |
| if self.deterministic: | |
| self.var = self.std = torch.zeros_like( | |
| self.mean, device=self.parameters.device, dtype=self.parameters.dtype | |
| ) | |
| def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: | |
| # make sure sample is on the same device as the parameters and has same dtype | |
| sample = randn_tensor( | |
| self.mean.shape, | |
| generator=generator, | |
| device=self.parameters.device, | |
| dtype=self.parameters.dtype, | |
| ) | |
| x = self.mean + self.std * sample | |
| return x | |
| def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor: | |
| if self.deterministic: | |
| return torch.Tensor([0.0]) | |
| else: | |
| if other is None: | |
| return 0.5 * torch.sum( | |
| torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, | |
| dim=[2, 3, 4], | |
| ) | |
| else: | |
| return 0.5 * torch.sum( | |
| torch.pow(self.mean - other.mean, 2) / other.var | |
| + self.var / other.var | |
| - 1.0 | |
| - self.logvar | |
| + other.logvar, | |
| dim=[2, 3, 4], | |
| ) | |
| def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor: | |
| if self.deterministic: | |
| return torch.Tensor([0.0]) | |
| logtwopi = np.log(2.0 * np.pi) | |
| return 0.5 * torch.sum( | |
| logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, | |
| dim=dims, | |
| ) | |
| def mode(self) -> torch.Tensor: | |
| return self.mean |