Spaces:
Sleeping
Sleeping
| pip install torch torchvision torchaudio | |
| import io | |
| import argparse | |
| import numpy as np | |
| import torch | |
| from decord import cpu, VideoReader, bridge | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| MODEL_PATH = "THUDM/cogvlm2-llama3-caption" | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16 | |
| parser = argparse.ArgumentParser(description="CogVLM2 Video to Text") | |
| parser.add_argument('--video', type=str, required=True, help="Path to the video file") | |
| parser.add_argument('--quant', type=int, choices=[4, 8], help='Enable 4-bit or 8-bit precision loading', default=0) | |
| args = parser.parse_args() | |
| def load_video(video_path, strategy='chat'): | |
| bridge.set_bridge('torch') | |
| with open(video_path, 'rb') as f: | |
| video_stream = f.read() | |
| num_frames = 24 | |
| decord_vr = VideoReader(io.BytesIO(video_stream), ctx=cpu(0)) | |
| frame_id_list = None | |
| total_frames = len(decord_vr) | |
| if strategy == 'base': | |
| clip_end_sec = 60 | |
| clip_start_sec = 0 | |
| start_frame = int(clip_start_sec * decord_vr.get_avg_fps()) | |
| end_frame = min(total_frames, int(clip_end_sec * decord_vr.get_avg_fps())) if clip_end_sec is not None else total_frames | |
| frame_id_list = np.linspace(start_frame, end_frame - 1, num_frames, dtype=int) | |
| elif strategy == 'chat': | |
| timestamps = decord_vr.get_frame_timestamp(np.arange(total_frames)) | |
| timestamps = [i[0] for i in timestamps] | |
| max_second = round(max(timestamps)) + 1 | |
| frame_id_list = [] | |
| for second in range(max_second): | |
| closest_num = min(timestamps, key=lambda x: abs(x - second)) | |
| index = timestamps.index(closest_num) | |
| frame_id_list.append(index) | |
| if len(frame_id_list) >= num_frames: | |
| break | |
| video_data = decord_vr.get_batch(frame_id_list) | |
| video_data = video_data.permute(3, 0, 1, 2) | |
| return video_data | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| MODEL_PATH, | |
| trust_remote_code=True, | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_PATH, | |
| torch_dtype=TORCH_TYPE, | |
| trust_remote_code=True | |
| ).eval().to(DEVICE) | |
| def predict(video_path, temperature=0.1): | |
| strategy = 'chat' | |
| prompt = "Please describe this video in detail." | |
| video_data = load_video(video_path, strategy=strategy) | |
| history = [] | |
| inputs = model.build_conversation_input_ids( | |
| tokenizer=tokenizer, | |
| query=prompt, | |
| images=[video_data], | |
| history=history, | |
| template_version=strategy | |
| ) | |
| inputs = { | |
| 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE), | |
| 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE), | |
| 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE), | |
| 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]], | |
| } | |
| gen_kwargs = { | |
| "max_new_tokens": 2048, | |
| "pad_token_id": 128002, | |
| "top_k": 1, | |
| "do_sample": False, | |
| "top_p": 0.1, | |
| "temperature": temperature, | |
| } | |
| with torch.no_grad(): | |
| outputs = model.generate(**inputs, **gen_kwargs) | |
| outputs = outputs[:, inputs['input_ids'].shape[1]:] | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| if __name__ == '__main__': | |
| video_file = args.video | |
| response_text = predict(video_file) | |
| print("\nGenerated Text Description:\n") | |
| print(response_text) |