Spaces:
Running
Running
Add application files
Browse files- .gitattributes +1 -0
- app.py +187 -0
- irasuto_items_20210224.pq.zip +3 -0
- requirements.txt +6 -0
.gitattributes
CHANGED
|
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
irasuto_items_20210224.pq.zip filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import unicode_literals
|
| 2 |
+
import re
|
| 3 |
+
import unicodedata
|
| 4 |
+
import torch
|
| 5 |
+
import streamlit as st
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import pyarrow as pa
|
| 8 |
+
import pyarrow.parquet as pq
|
| 9 |
+
import numpy as np
|
| 10 |
+
import scipy.spatial
|
| 11 |
+
from transformers import BertJapaneseTokenizer, BertModel
|
| 12 |
+
import pyminizip
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def unicode_normalize(cls, s):
|
| 16 |
+
pt = re.compile("([{}]+)".format(cls))
|
| 17 |
+
|
| 18 |
+
def norm(c):
|
| 19 |
+
return unicodedata.normalize("NFKC", c) if pt.match(c) else c
|
| 20 |
+
|
| 21 |
+
s = "".join(norm(x) for x in re.split(pt, s))
|
| 22 |
+
s = re.sub("-", "-", s)
|
| 23 |
+
return s
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def remove_extra_spaces(s):
|
| 27 |
+
s = re.sub("[ ]+", " ", s)
|
| 28 |
+
blocks = "".join(
|
| 29 |
+
(
|
| 30 |
+
"\u4E00-\u9FFF", # CJK UNIFIED IDEOGRAPHS
|
| 31 |
+
"\u3040-\u309F", # HIRAGANA
|
| 32 |
+
"\u30A0-\u30FF", # KATAKANA
|
| 33 |
+
"\u3000-\u303F", # CJK SYMBOLS AND PUNCTUATION
|
| 34 |
+
"\uFF00-\uFFEF", # HALFWIDTH AND FULLWIDTH FORMS
|
| 35 |
+
)
|
| 36 |
+
)
|
| 37 |
+
basic_latin = "\u0000-\u007F"
|
| 38 |
+
|
| 39 |
+
def remove_space_between(cls1, cls2, s):
|
| 40 |
+
p = re.compile("([{}]) ([{}])".format(cls1, cls2))
|
| 41 |
+
while p.search(s):
|
| 42 |
+
s = p.sub(r"\1\2", s)
|
| 43 |
+
return s
|
| 44 |
+
|
| 45 |
+
s = remove_space_between(blocks, blocks, s)
|
| 46 |
+
s = remove_space_between(blocks, basic_latin, s)
|
| 47 |
+
s = remove_space_between(basic_latin, blocks, s)
|
| 48 |
+
return s
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def normalize_neologd(s):
|
| 52 |
+
s = s.strip()
|
| 53 |
+
s = unicode_normalize("0-9A-Za-z。-゚", s)
|
| 54 |
+
|
| 55 |
+
def maketrans(f, t):
|
| 56 |
+
return {ord(x): ord(y) for x, y in zip(f, t)}
|
| 57 |
+
|
| 58 |
+
s = re.sub("[˗֊‐‑‒–⁃⁻₋−]+", "-", s) # normalize hyphens
|
| 59 |
+
s = re.sub("[﹣-ー—―─━ー]+", "ー", s) # normalize choonpus
|
| 60 |
+
s = re.sub("[~∼∾〜〰~]+", "〜", s) # normalize tildes (modified by Isao Sonobe)
|
| 61 |
+
s = s.translate(
|
| 62 |
+
maketrans(
|
| 63 |
+
"!\"#$%&'()*+,-./:;<=>?@[¥]^_`{|}~。、・「」",
|
| 64 |
+
"!”#$%&’()*+,-./:;<=>?@[¥]^_`{|}〜。、・「」",
|
| 65 |
+
)
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
s = remove_extra_spaces(s)
|
| 69 |
+
s = unicode_normalize("!”#$%&’()*+,-./:;<>?@[¥]^_`{|}〜", s) # keep =,・,「,」
|
| 70 |
+
s = re.sub("[’]", "'", s)
|
| 71 |
+
s = re.sub("[”]", '"', s)
|
| 72 |
+
# s = s.upper()
|
| 73 |
+
return s
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def normalize_text(text):
|
| 77 |
+
return normalize_neologd(text)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def normalize_title(title):
|
| 81 |
+
title = title.strip()
|
| 82 |
+
|
| 83 |
+
match = re.match(r"^「([^」]+)」$", title)
|
| 84 |
+
if match:
|
| 85 |
+
title = match.group(1)
|
| 86 |
+
|
| 87 |
+
match = re.match(r"^POP素材「([^」]+)」$", title)
|
| 88 |
+
if match:
|
| 89 |
+
title = match.group(1)
|
| 90 |
+
|
| 91 |
+
match = re.match(
|
| 92 |
+
r"^(.*?)(の?(?:イラスト|イラストの|イラストト|イ子のラスト|イラス|イラスト文字|「イラスト文字」|イラストPOP文字|ペンキ文字|タイトル文字|イラスト・メッセージ|イラスト文字・バナー|キャラクター(たち)?|マーク|アイコン|シルエット|シルエット素材|フレーム(枠)|フレーム|フレーム素材|テンプレート|パターン|パターン素材|ライン素材|コーナー素材|リボン型バナー|評価スタンプ|背景素材))+(\s*([0-90-9]*|その[0-90-9]+)\s*(((|\()[^))]+()|\))|「[^」]+」|・.+)*(です。)?)",
|
| 93 |
+
title,
|
| 94 |
+
)
|
| 95 |
+
if match:
|
| 96 |
+
title = match.group(1) + ("" if match.group(3) is None else match.group(3))
|
| 97 |
+
if title == "":
|
| 98 |
+
raise ValueError(title)
|
| 99 |
+
|
| 100 |
+
title = normalize_text(title)
|
| 101 |
+
|
| 102 |
+
return title
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class SentenceBertJapanese:
|
| 106 |
+
def __init__(self, model_name_or_path, device=None):
|
| 107 |
+
self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path)
|
| 108 |
+
self.model = BertModel.from_pretrained(model_name_or_path)
|
| 109 |
+
self.model.eval()
|
| 110 |
+
|
| 111 |
+
if device is None:
|
| 112 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 113 |
+
self.device = torch.device(device)
|
| 114 |
+
self.model.to(device)
|
| 115 |
+
|
| 116 |
+
def _mean_pooling(self, model_output, attention_mask):
|
| 117 |
+
token_embeddings = model_output[
|
| 118 |
+
0
|
| 119 |
+
] # First element of model_output contains all token embeddings
|
| 120 |
+
input_mask_expanded = (
|
| 121 |
+
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 122 |
+
)
|
| 123 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
|
| 124 |
+
input_mask_expanded.sum(1), min=1e-9
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
@torch.no_grad()
|
| 128 |
+
def encode(self, sentences, batch_size=8):
|
| 129 |
+
all_embeddings = []
|
| 130 |
+
iterator = range(0, len(sentences), batch_size)
|
| 131 |
+
for batch_idx in iterator:
|
| 132 |
+
batch = sentences[batch_idx : batch_idx + batch_size]
|
| 133 |
+
|
| 134 |
+
encoded_input = self.tokenizer.batch_encode_plus(
|
| 135 |
+
batch, padding="longest", truncation=True, return_tensors="pt"
|
| 136 |
+
).to(self.device)
|
| 137 |
+
model_output = self.model(**encoded_input)
|
| 138 |
+
sentence_embeddings = self._mean_pooling(
|
| 139 |
+
model_output, encoded_input["attention_mask"]
|
| 140 |
+
).to("cpu")
|
| 141 |
+
|
| 142 |
+
all_embeddings.extend(sentence_embeddings)
|
| 143 |
+
|
| 144 |
+
# return torch.stack(all_embeddings).numpy()
|
| 145 |
+
return torch.stack(all_embeddings)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
st.title("いらすと検索")
|
| 149 |
+
description_text = st.empty()
|
| 150 |
+
description_text.text("...モデル読み込み中...")
|
| 151 |
+
|
| 152 |
+
model = SentenceBertJapanese("sonoisa/sentence-bert-base-ja-mean-tokens")
|
| 153 |
+
|
| 154 |
+
pyminizip.uncompress(
|
| 155 |
+
"irasuto_items_20210224.pq.zip", st.secrets["ZIP_PASSWORD"], None, 1
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
df = pq.read_table("irasuto_items_20210224.parquet").to_pandas()
|
| 159 |
+
sentence_vectors = np.array(df["sentence_vector"])
|
| 160 |
+
|
| 161 |
+
st.text("説明文の意味が近い「いらすとや」画像を検索します。")
|
| 162 |
+
query_input = st.text_input(label="説明文", value="")
|
| 163 |
+
search_buttion = st.button("検索")
|
| 164 |
+
|
| 165 |
+
closest_n = 5
|
| 166 |
+
|
| 167 |
+
if search_buttion:
|
| 168 |
+
query = str(query_input)
|
| 169 |
+
query_embedding = model.encode([query]).numpy()
|
| 170 |
+
|
| 171 |
+
distances = scipy.spatial.distance.cdist(
|
| 172 |
+
[query_embedding], sentence_vectors, metric="cosine"
|
| 173 |
+
)[0]
|
| 174 |
+
|
| 175 |
+
results = zip(range(len(distances)), distances)
|
| 176 |
+
results = sorted(results, key=lambda x: x[1])
|
| 177 |
+
|
| 178 |
+
print("\n\n======================\n\n")
|
| 179 |
+
print("Query:", query)
|
| 180 |
+
print("\nTop 5 most similar sentences in corpus:")
|
| 181 |
+
|
| 182 |
+
for idx, distance in results[0:closest_n]:
|
| 183 |
+
# print(sentences[idx].strip(), "(Score: %.4f)" % (distance / 2))
|
| 184 |
+
print(
|
| 185 |
+
f"{df.iloc[idx]['title']} {df.iloc[idx]['normalized_description']} (Score: %.4f)"
|
| 186 |
+
% (distance / 2)
|
| 187 |
+
)
|
irasuto_items_20210224.pq.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:338ffc5865419f827dd02a22f7962dbbf5e2cae4670861c518035d1fce7ead12
|
| 3 |
+
size 77950743
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.7.0
|
| 2 |
+
torch==1.7.0
|
| 3 |
+
sentencepiece
|
| 4 |
+
pyminizip
|
| 5 |
+
fugashi
|
| 6 |
+
ipadic
|