Create utils.py
Browse files- detector/utils.py +62 -0
detector/utils.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from functools import reduce
|
| 3 |
+
|
| 4 |
+
from torch import nn
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def summary(model: nn.Module, file=sys.stdout):
|
| 9 |
+
def repr(model):
|
| 10 |
+
# We treat the extra repr like the sub-module, one item per line
|
| 11 |
+
extra_lines = []
|
| 12 |
+
extra_repr = model.extra_repr()
|
| 13 |
+
# empty string will be split into list ['']
|
| 14 |
+
if extra_repr:
|
| 15 |
+
extra_lines = extra_repr.split('\n')
|
| 16 |
+
child_lines = []
|
| 17 |
+
total_params = 0
|
| 18 |
+
for key, module in model._modules.items():
|
| 19 |
+
mod_str, num_params = repr(module)
|
| 20 |
+
mod_str = nn.modules.module._addindent(mod_str, 2)
|
| 21 |
+
child_lines.append('(' + key + '): ' + mod_str)
|
| 22 |
+
total_params += num_params
|
| 23 |
+
lines = extra_lines + child_lines
|
| 24 |
+
|
| 25 |
+
for name, p in model._parameters.items():
|
| 26 |
+
if hasattr(p, 'shape'):
|
| 27 |
+
total_params += reduce(lambda x, y: x * y, p.shape)
|
| 28 |
+
|
| 29 |
+
main_str = model._get_name() + '('
|
| 30 |
+
if lines:
|
| 31 |
+
# simple one-liner info, which most builtin Modules will use
|
| 32 |
+
if len(extra_lines) == 1 and not child_lines:
|
| 33 |
+
main_str += extra_lines[0]
|
| 34 |
+
else:
|
| 35 |
+
main_str += '\n ' + '\n '.join(lines) + '\n'
|
| 36 |
+
|
| 37 |
+
main_str += ')'
|
| 38 |
+
if file is sys.stdout:
|
| 39 |
+
main_str += ', \033[92m{:,}\033[0m params'.format(total_params)
|
| 40 |
+
else:
|
| 41 |
+
main_str += ', {:,} params'.format(total_params)
|
| 42 |
+
return main_str, total_params
|
| 43 |
+
|
| 44 |
+
string, count = repr(model)
|
| 45 |
+
if file is not None:
|
| 46 |
+
if isinstance(file, str):
|
| 47 |
+
file = open(file, 'w')
|
| 48 |
+
print(string, file=file)
|
| 49 |
+
file.flush()
|
| 50 |
+
|
| 51 |
+
return count
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def grad_norm(model: nn.Module):
|
| 55 |
+
total_norm = 0
|
| 56 |
+
for p in model.parameters():
|
| 57 |
+
param_norm = p.grad.data.norm(2)
|
| 58 |
+
total_norm += param_norm.item() ** 2
|
| 59 |
+
return total_norm ** 0.5
|
| 60 |
+
|
| 61 |
+
def distributed():
|
| 62 |
+
return dist.is_available() and dist.is_initialized()
|