Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,11 +8,13 @@ from cnocr import CnOcr
|
|
| 8 |
import numpy as np
|
| 9 |
import openai
|
| 10 |
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, Prompt
|
|
|
|
| 11 |
|
| 12 |
ocr = CnOcr() # 初始化ocr模型
|
| 13 |
history_max_len = 500 # 机器人记忆的最大长度
|
| 14 |
all_max_len = 2000 # 输入的最大长度
|
| 15 |
-
|
|
|
|
| 16 |
|
| 17 |
def get_text_emb(open_ai_key, text): # 文本向量化
|
| 18 |
openai.api_key = open_ai_key # 设置openai的key
|
|
@@ -29,7 +31,8 @@ def doc_index_self(open_ai_key, doc): # 文档向量化
|
|
| 29 |
for text in texts: # 遍历每一行
|
| 30 |
emb_list.append(get_text_emb(open_ai_key, text)) # 获取向量
|
| 31 |
return texts, emb_list, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Markdown.update(
|
| 32 |
-
value="""操作说明 step 3:建立索引(by self)成功! 🙋 可以开始对话啦~"""), gr.Chatbot.update(visible=True), 1
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
def doc_index_llama(open_ai_key, txt): # 建立索引
|
|
@@ -53,7 +56,8 @@ def doc_index_llama(open_ai_key, txt): # 建立索引
|
|
| 53 |
qa_template = Prompt(template) # 将模板转换成Prompt对象
|
| 54 |
query_engine = index.as_query_engine(text_qa_template=qa_template) # 建立查询引擎
|
| 55 |
return query_engine, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Markdown.update(
|
| 56 |
-
value="""操作说明 step 3:建立索引(by llama_index)成功! 🙋 可以开始对话啦~"""), gr.Chatbot.update(
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
def get_response_by_self(open_ai_key, msg, bot, doc_text_list, doc_embeddings): # 获取机器人回复
|
|
@@ -181,6 +185,20 @@ def up_file(files): # 上传文件
|
|
| 181 |
value="操作说明 step 2:确认PDF解析结果(可修正),点击“建立索引”,随后进行对话")
|
| 182 |
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
with gr.Blocks() as demo:
|
| 185 |
with gr.Row():
|
| 186 |
with gr.Column():
|
|
@@ -198,14 +216,17 @@ with gr.Blocks() as demo:
|
|
| 198 |
with gr.Column():
|
| 199 |
md = gr.Markdown("""操作说明 step 1:点击左侧区域,上传PDF,进行解析""") # 操作说明
|
| 200 |
chat_bot = gr.Chatbot(visible=False) # 聊天机器人
|
| 201 |
-
|
|
|
|
| 202 |
chat_bu = gr.Button(value='发送', visible=False) # 发送按钮
|
| 203 |
|
| 204 |
file.change(up_file, [file], [txt, index_self_bu, index_llama_bu, md]) # 上传文件
|
| 205 |
index_self_bu.click(doc_index_self, [open_ai_key, txt],
|
| 206 |
-
[doc_text_state, doc_emb_state, msg_txt, chat_bu, md, chat_bot, index_type
|
|
|
|
| 207 |
index_llama_bu.click(doc_index_llama, [open_ai_key, txt],
|
| 208 |
-
[query_engine, msg_txt, chat_bu, md, chat_bot, index_type]) # 提交解析结果
|
|
|
|
| 209 |
chat_bu.click(get_response,
|
| 210 |
[open_ai_key, msg_txt, chat_bot, doc_text_state, doc_emb_state, query_engine, index_type],
|
| 211 |
[chat_bot]) # 发送消息
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
import openai
|
| 10 |
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, Prompt
|
| 11 |
+
from transformers import pipeline
|
| 12 |
|
| 13 |
ocr = CnOcr() # 初始化ocr模型
|
| 14 |
history_max_len = 500 # 机器人记忆的最大长度
|
| 15 |
all_max_len = 2000 # 输入的最大长度
|
| 16 |
+
asr_model_id = "souljoy/whisper-tiny" # 更新为你的模型ID
|
| 17 |
+
asr_pipe = pipeline("automatic-speech-recognition", model=asr_model_id)
|
| 18 |
|
| 19 |
def get_text_emb(open_ai_key, text): # 文本向量化
|
| 20 |
openai.api_key = open_ai_key # 设置openai的key
|
|
|
|
| 31 |
for text in texts: # 遍历每一行
|
| 32 |
emb_list.append(get_text_emb(open_ai_key, text)) # 获取向量
|
| 33 |
return texts, emb_list, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Markdown.update(
|
| 34 |
+
value="""操作说明 step 3:建立索引(by self)成功! 🙋 可以开始对话啦~"""), gr.Chatbot.update(visible=True), 1, gr.Audio.update(
|
| 35 |
+
visible=True)
|
| 36 |
|
| 37 |
|
| 38 |
def doc_index_llama(open_ai_key, txt): # 建立索引
|
|
|
|
| 56 |
qa_template = Prompt(template) # 将模板转换成Prompt对象
|
| 57 |
query_engine = index.as_query_engine(text_qa_template=qa_template) # 建立查询引擎
|
| 58 |
return query_engine, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Markdown.update(
|
| 59 |
+
value="""操作说明 step 3:建立索引(by llama_index)成功! 🙋 可以开始对话啦~"""), gr.Chatbot.update(
|
| 60 |
+
visible=True), 0, gr.Audio.update(visible=True)
|
| 61 |
|
| 62 |
|
| 63 |
def get_response_by_self(open_ai_key, msg, bot, doc_text_list, doc_embeddings): # 获取机器人回复
|
|
|
|
| 185 |
value="操作说明 step 2:确认PDF解析结果(可修正),点击“建立索引”,随后进行对话")
|
| 186 |
|
| 187 |
|
| 188 |
+
def transcribe_speech(filepath):
|
| 189 |
+
output = asr_pipe(
|
| 190 |
+
filepath,
|
| 191 |
+
max_new_tokens=256,
|
| 192 |
+
generate_kwargs={
|
| 193 |
+
"task": "transcribe",
|
| 194 |
+
"language": "chinese",
|
| 195 |
+
}, # 更新为你微调的语言
|
| 196 |
+
chunk_length_s=30,
|
| 197 |
+
batch_size=8,
|
| 198 |
+
)
|
| 199 |
+
return output["text"]
|
| 200 |
+
|
| 201 |
+
|
| 202 |
with gr.Blocks() as demo:
|
| 203 |
with gr.Row():
|
| 204 |
with gr.Column():
|
|
|
|
| 216 |
with gr.Column():
|
| 217 |
md = gr.Markdown("""操作说明 step 1:点击左侧区域,上传PDF,进行解析""") # 操作说明
|
| 218 |
chat_bot = gr.Chatbot(visible=False) # 聊天机器人
|
| 219 |
+
audio_inputs = gr.Audio(source="microphone", type="filepath", label="点击录音输入", visible=False) # 录音输入
|
| 220 |
+
msg_txt = gr.Textbox(label='消息框', placeholder='输入消息', visible=False) # 消息框
|
| 221 |
chat_bu = gr.Button(value='发送', visible=False) # 发送按钮
|
| 222 |
|
| 223 |
file.change(up_file, [file], [txt, index_self_bu, index_llama_bu, md]) # 上传文件
|
| 224 |
index_self_bu.click(doc_index_self, [open_ai_key, txt],
|
| 225 |
+
[doc_text_state, doc_emb_state, msg_txt, chat_bu, md, chat_bot, index_type,
|
| 226 |
+
audio_inputs]) # 提交解析结果
|
| 227 |
index_llama_bu.click(doc_index_llama, [open_ai_key, txt],
|
| 228 |
+
[query_engine, msg_txt, chat_bu, md, chat_bot, index_type, audio_inputs]) # 提交解析结果
|
| 229 |
+
audio_inputs.change(transcribe_speech, [audio_inputs], [msg_txt]) # 录音输入
|
| 230 |
chat_bu.click(get_response,
|
| 231 |
[open_ai_key, msg_txt, chat_bot, doc_text_state, doc_emb_state, query_engine, index_type],
|
| 232 |
[chat_bot]) # 发送消息
|