File size: 2,085 Bytes
f516bd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

import gradio as gr
from PIL import Image
from transformers import pipeline
import torch

DESCRIPTION = """
# 🐼 Simple Image Classifier (ViT)
Sube una imagen y el modelo devuelve las **probabilidades top‑k** de las clases.
Puedes elegir distintos modelos del Hub (cargados automáticamente).
"""

DEFAULT_MODEL = "google/vit-base-patch16-224"
MODEL_OPTIONS = [
    "google/vit-base-patch16-224",
    "facebook/deit-base-patch16-224",
    "microsoft/resnet-50",
]

# Cache del pipeline para no recargar al cambiar parámetros que no sean el modelo
_pipes = {}

def get_pipe(model_id: str):
    if model_id not in _pipes:
        # device map sencillo: usa GPU si está disponible
        device = 0 if torch.cuda.is_available() else -1
        _pipes[model_id] = pipeline(
            task="image-classification",
            model=model_id,
            device=device
        )
    return _pipes[model_id]

def classify(image: Image.Image, model_id: str, top_k: int):
    if image is None:
        return []
    pipe = get_pipe(model_id)
    # Asegurar modo RGB
    image = image.convert("RGB")
    preds = pipe(image, top_k=top_k)
    # Normalizamos a una tabla [(label, score)]
    rows = [(p["label"], float(p["score"])) for p in preds]
    return rows

with gr.Blocks() as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column(scale=2):
            image = gr.Image(type="pil", label="Imagen de entrada")
            with gr.Row():
                model_id = gr.Dropdown(
                    choices=MODEL_OPTIONS,
                    value=DEFAULT_MODEL,
                    label="Modelo"
                )
                top_k = gr.Slider(1, 10, value=5, step=1, label="Top‑K")
            btn = gr.Button("Clasificar")
        with gr.Column(scale=1):
            output = gr.Dataframe(
                headers=["label", "score"],
                datatype=["str", "number"],
                label="Resultados"
            )
    btn.click(fn=classify, inputs=[image, model_id, top_k], outputs=output)

if __name__ == "__main__":
    demo.launch()