Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import sparknlp | |
| import os | |
| import pandas as pd | |
| from sparknlp.base import * | |
| from sparknlp.annotator import * | |
| from pyspark.ml import Pipeline | |
| from sparknlp.pretrained import PretrainedPipeline | |
| from streamlit_tags import st_tags | |
| # Page configuration | |
| st.set_page_config( | |
| layout="wide", | |
| initial_sidebar_state="auto" | |
| ) | |
| # CSS for styling | |
| st.markdown(""" | |
| <style> | |
| .main-title { | |
| font-size: 36px; | |
| color: #4A90E2; | |
| font-weight: bold; | |
| text-align: center; | |
| } | |
| .section { | |
| background-color: #f9f9f9; | |
| padding: 10px; | |
| border-radius: 10px; | |
| margin-top: 10px; | |
| } | |
| .section p, .section ul { | |
| color: #666666; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| def init_spark(): | |
| return sparknlp.start() | |
| def create_pipeline(model): | |
| imageAssembler = ImageAssembler() \ | |
| .setInputCol("image") \ | |
| .setOutputCol("image_assembler") | |
| imageClassifier = ConvNextForImageClassification \ | |
| .pretrained("image_classifier_convnext_tiny_224_local", "en") \ | |
| .setInputCols(["image_assembler"]) \ | |
| .setOutputCol("class") | |
| pipeline = Pipeline(stages=[image_assembler, imageClassifier]) | |
| return pipeline | |
| def fit_data(pipeline, data): | |
| empty_df = spark.createDataFrame([['']]).toDF('text') | |
| model = pipeline.fit(empty_df) | |
| light_pipeline = LightPipeline(model) | |
| annotations_result = light_pipeline.fullAnnotateImage(data) | |
| return annotations_result[0]['class'][0].result | |
| def save_uploadedfile(uploadedfile): | |
| filepath = os.path.join(IMAGE_FILE_PATH, uploadedfile.name) | |
| with open(filepath, "wb") as f: | |
| if hasattr(uploadedfile, 'getbuffer'): | |
| f.write(uploadedfile.getbuffer()) | |
| else: | |
| f.write(uploadedfile.read()) | |
| # Sidebar content | |
| model_list = ['image_classifier_convnext_tiny_224_local'] | |
| model = st.sidebar.selectbox( | |
| "Choose the pretrained model", | |
| model_list, | |
| help="For more info about the models visit: https://sparknlp.org/models" | |
| ) | |
| # Set up the page layout | |
| st.markdown(f'<div class="main-title">ConvNext For Image Classification</div>', unsafe_allow_html=True) | |
| # st.markdown(f'<div class="section"><p>{sub_title}</p></div>', unsafe_allow_html=True) | |
| # Reference notebook link in sidebar | |
| link = """ | |
| <a href="https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/image/ConvNextForImageClassification.ipynb"> | |
| <img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/> | |
| </a> | |
| """ | |
| st.sidebar.markdown('Reference notebook:') | |
| st.sidebar.markdown(link, unsafe_allow_html=True) | |
| # Load examples | |
| IMAGE_FILE_PATH = f"inputs" | |
| image_files = sorted([file for file in os.listdir(IMAGE_FILE_PATH) if file.split('.')[-1]=='png' or file.split('.')[-1]=='jpg' or file.split('.')[-1]=='JPEG' or file.split('.')[-1]=='jpeg']) | |
| img_options = st.selectbox("Select an image", image_files) | |
| uploadedfile = st.file_uploader("Try it for yourself!") | |
| if uploadedfile: | |
| file_details = {"FileName":uploadedfile.name,"FileType":uploadedfile.type} | |
| save_uploadedfile(uploadedfile) | |
| selected_image = f"{IMAGE_FILE_PATH}/{uploadedfile.name}" | |
| elif img_options: | |
| selected_image = f"{IMAGE_FILE_PATH}/{img_options}" | |
| st.subheader('Classified Image') | |
| image_size = st.slider('Image Size', 400, 1000, value=400, step = 100) | |
| try: | |
| st.image(f"{IMAGE_FILE_PATH}/{selected_image}", width=image_size) | |
| except: | |
| st.image(selected_image, width=image_size) | |
| st.subheader('Classification') | |
| spark = init_spark() | |
| Pipeline = create_pipeline(model) | |
| output = fit_data(Pipeline, selected_image) | |
| st.markdown(f'This document has been classified as : **{output}**') |