Spaces:
Runtime error
Runtime error
Merge branch 'pr/15' into pr/18
Browse files- app.py +67 -13
- src/backend/envs.py +1 -1
- src/display/utils.py +1 -0
- src/envs.py +2 -2
- src/populate.py +2 -0
- src/submission/submit.py +5 -1
app.py
CHANGED
|
@@ -2,10 +2,11 @@
|
|
| 2 |
import os
|
| 3 |
import datetime
|
| 4 |
import socket
|
|
|
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import pandas as pd
|
| 8 |
-
|
| 9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 10 |
|
| 11 |
from huggingface_hub import snapshot_download
|
|
@@ -37,11 +38,24 @@ from src.display.utils import (
|
|
| 37 |
Precision,
|
| 38 |
)
|
| 39 |
|
| 40 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC,
|
|
|
|
| 41 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 42 |
from src.submission.submit import add_new_eval
|
| 43 |
from src.utils import get_dataset_summary_table
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
def ui_snapshot_download(repo_id, local_dir, repo_type, tqdm_class, etag_timeout):
|
| 47 |
try:
|
|
@@ -75,11 +89,6 @@ def init_space():
|
|
| 75 |
)
|
| 76 |
return dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
|
| 77 |
|
| 78 |
-
|
| 79 |
-
dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
|
| 80 |
-
leaderboard_df = original_df.copy()
|
| 81 |
-
|
| 82 |
-
|
| 83 |
# Searching and filtering
|
| 84 |
def update_table(
|
| 85 |
hidden_df: pd.DataFrame, columns: list, type_query: list, precision_query: list, size_query: list, query: str
|
|
@@ -142,6 +151,51 @@ def filter_models(df: pd.DataFrame, type_query: list, size_query: list, precisio
|
|
| 142 |
|
| 143 |
return filtered_df
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
# triggered only once at startup => read query parameter if it exists
|
| 147 |
def load_query(request: gr.Request):
|
|
@@ -385,8 +439,7 @@ with demo:
|
|
| 385 |
|
| 386 |
scheduler = BackgroundScheduler()
|
| 387 |
|
| 388 |
-
scheduler.add_job(restart_space, "interval",
|
| 389 |
-
|
| 390 |
|
| 391 |
def launch_backend():
|
| 392 |
import subprocess
|
|
@@ -395,8 +448,9 @@ def launch_backend():
|
|
| 395 |
if DEVICE not in {"cpu"}:
|
| 396 |
_ = subprocess.run(["python", "backend-cli.py"])
|
| 397 |
|
| 398 |
-
|
| 399 |
# scheduler.add_job(launch_backend, "interval", seconds=120)
|
| 400 |
-
|
| 401 |
-
scheduler.start()
|
| 402 |
-
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
import datetime
|
| 4 |
import socket
|
| 5 |
+
from threading import Thread
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import pandas as pd
|
| 9 |
+
import time
|
| 10 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 11 |
|
| 12 |
from huggingface_hub import snapshot_download
|
|
|
|
| 38 |
Precision,
|
| 39 |
)
|
| 40 |
|
| 41 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, \
|
| 42 |
+
QUEUE_REPO, REPO_ID, RESULTS_REPO, DEBUG_QUEUE_REPO, DEBUG_RESULTS_REPO
|
| 43 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 44 |
from src.submission.submit import add_new_eval
|
| 45 |
from src.utils import get_dataset_summary_table
|
| 46 |
|
| 47 |
+
def get_args():
|
| 48 |
+
import argparse
|
| 49 |
+
|
| 50 |
+
parser = argparse.ArgumentParser(description="Run the LLM Leaderboard")
|
| 51 |
+
parser.add_argument("--debug", action="store_true", help="Run in debug mode")
|
| 52 |
+
return parser.parse_args()
|
| 53 |
+
|
| 54 |
+
args = get_args()
|
| 55 |
+
if args.debug:
|
| 56 |
+
print("Running in debug mode")
|
| 57 |
+
QUEUE_REPO = DEBUG_QUEUE_REPO
|
| 58 |
+
RESULTS_REPO = DEBUG_RESULTS_REPO
|
| 59 |
|
| 60 |
def ui_snapshot_download(repo_id, local_dir, repo_type, tqdm_class, etag_timeout):
|
| 61 |
try:
|
|
|
|
| 89 |
)
|
| 90 |
return dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
# Searching and filtering
|
| 93 |
def update_table(
|
| 94 |
hidden_df: pd.DataFrame, columns: list, type_query: list, precision_query: list, size_query: list, query: str
|
|
|
|
| 151 |
|
| 152 |
return filtered_df
|
| 153 |
|
| 154 |
+
shown_columns = None
|
| 155 |
+
dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
|
| 156 |
+
leaderboard_df = original_df.copy()
|
| 157 |
+
|
| 158 |
+
def update_leaderboard_table():
|
| 159 |
+
global leaderboard_df, shown_columns
|
| 160 |
+
print("Updating leaderboard table")
|
| 161 |
+
return leaderboard_df[
|
| 162 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 163 |
+
+ shown_columns.value
|
| 164 |
+
+ [AutoEvalColumn.dummy.name]
|
| 165 |
+
] if not leaderboard_df.empty else leaderboard_df
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def update_hidden_leaderboard_table():
|
| 169 |
+
global original_df
|
| 170 |
+
return original_df[COLS] if original_df.empty is False else original_df
|
| 171 |
+
|
| 172 |
+
def update_dataset_table():
|
| 173 |
+
global dataset_df
|
| 174 |
+
return dataset_df
|
| 175 |
+
|
| 176 |
+
def update_finish_table():
|
| 177 |
+
global finished_eval_queue_df
|
| 178 |
+
return finished_eval_queue_df
|
| 179 |
+
|
| 180 |
+
def update_running_table():
|
| 181 |
+
global running_eval_queue_df
|
| 182 |
+
return running_eval_queue_df
|
| 183 |
+
|
| 184 |
+
def update_pending_table():
|
| 185 |
+
global pending_eval_queue_df
|
| 186 |
+
return pending_eval_queue_df
|
| 187 |
+
|
| 188 |
+
def update_finish_num():
|
| 189 |
+
global finished_eval_queue_df
|
| 190 |
+
return len(finished_eval_queue_df)
|
| 191 |
+
|
| 192 |
+
def update_running_num():
|
| 193 |
+
global running_eval_queue_df
|
| 194 |
+
return len(running_eval_queue_df)
|
| 195 |
+
|
| 196 |
+
def update_pending_num():
|
| 197 |
+
global pending_eval_queue_df
|
| 198 |
+
return len(pending_eval_queue_df)
|
| 199 |
|
| 200 |
# triggered only once at startup => read query parameter if it exists
|
| 201 |
def load_query(request: gr.Request):
|
|
|
|
| 439 |
|
| 440 |
scheduler = BackgroundScheduler()
|
| 441 |
|
| 442 |
+
scheduler.add_job(restart_space, "interval", hours=6)
|
|
|
|
| 443 |
|
| 444 |
def launch_backend():
|
| 445 |
import subprocess
|
|
|
|
| 448 |
if DEVICE not in {"cpu"}:
|
| 449 |
_ = subprocess.run(["python", "backend-cli.py"])
|
| 450 |
|
| 451 |
+
Thread(target=periodic_init, daemon=True).start()
|
| 452 |
# scheduler.add_job(launch_backend, "interval", seconds=120)
|
| 453 |
+
if __name__ == "__main__":
|
| 454 |
+
scheduler.start()
|
| 455 |
+
block_launch()
|
| 456 |
+
|
src/backend/envs.py
CHANGED
|
@@ -63,4 +63,4 @@ EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
|
| 63 |
EVAL_REQUESTS_PATH_BACKEND_SYNC = os.path.join(CACHE_PATH, "eval-queue-bk-sync")
|
| 64 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
| 65 |
|
| 66 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 63 |
EVAL_REQUESTS_PATH_BACKEND_SYNC = os.path.join(CACHE_PATH, "eval-queue-bk-sync")
|
| 64 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
| 65 |
|
| 66 |
+
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
src/display/utils.py
CHANGED
|
@@ -140,6 +140,7 @@ class EvalQueueColumn: # Queue column
|
|
| 140 |
private = ColumnContent("private", "bool", True)
|
| 141 |
precision = ColumnContent("precision", "str", True)
|
| 142 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
|
|
|
| 143 |
status = ColumnContent("status", "str", True)
|
| 144 |
|
| 145 |
|
|
|
|
| 140 |
private = ColumnContent("private", "bool", True)
|
| 141 |
precision = ColumnContent("precision", "str", True)
|
| 142 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
| 143 |
+
model_framework = ColumnContent("inference_framework", "str", True)
|
| 144 |
status = ColumnContent("status", "str", True)
|
| 145 |
|
| 146 |
|
src/envs.py
CHANGED
|
@@ -12,8 +12,8 @@ QUEUE_REPO = "sparse-generative-ai/requests"
|
|
| 12 |
QUEUE_REPO_OPEN_LLM = "open-llm-leaderboard/requests"
|
| 13 |
RESULTS_REPO = "sparse-generative-ai/results"
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
| 18 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
| 19 |
|
|
|
|
| 12 |
QUEUE_REPO_OPEN_LLM = "open-llm-leaderboard/requests"
|
| 13 |
RESULTS_REPO = "sparse-generative-ai/results"
|
| 14 |
|
| 15 |
+
DEBUG_QUEUE_REPO = "sparse-generative-ai/debug_requests"
|
| 16 |
+
DEBUG_RESULTS_REPO = "sparse-generative-ai/debug_results"
|
| 17 |
|
| 18 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
| 19 |
|
src/populate.py
CHANGED
|
@@ -95,6 +95,7 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> tuple[pd.DataFrame, p
|
|
| 95 |
|
| 96 |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
| 97 |
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
|
|
|
| 98 |
|
| 99 |
all_evals.append(data)
|
| 100 |
elif ".md" not in entry:
|
|
@@ -107,6 +108,7 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> tuple[pd.DataFrame, p
|
|
| 107 |
|
| 108 |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
| 109 |
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
|
|
|
| 110 |
all_evals.append(data)
|
| 111 |
|
| 112 |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
|
|
|
| 95 |
|
| 96 |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
| 97 |
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
| 98 |
+
data[EvalQueueColumn.model_framework.name] = data.get("inference_framework", "-")
|
| 99 |
|
| 100 |
all_evals.append(data)
|
| 101 |
elif ".md" not in entry:
|
|
|
|
| 108 |
|
| 109 |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
| 110 |
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
| 111 |
+
data[EvalQueueColumn.model_framework.name] = data.get("inference_framework", "-")
|
| 112 |
all_evals.append(data)
|
| 113 |
|
| 114 |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
src/submission/submit.py
CHANGED
|
@@ -3,7 +3,7 @@ import os
|
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
|
| 5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 6 |
-
from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
|
| 7 |
from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
|
| 8 |
from src.submission.check_validity import (
|
| 9 |
already_submitted_models,
|
|
@@ -26,12 +26,16 @@ def add_new_eval(
|
|
| 26 |
weight_type: str,
|
| 27 |
model_type: str,
|
| 28 |
inference_framework: str,
|
|
|
|
| 29 |
):
|
| 30 |
global REQUESTED_MODELS
|
| 31 |
global USERS_TO_SUBMISSION_DATES
|
| 32 |
if not REQUESTED_MODELS:
|
| 33 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
user_name = ""
|
| 36 |
model_path = model
|
| 37 |
if "/" in model:
|
|
|
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
|
| 5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 6 |
+
from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA, DEBUG_QUEUE_REPO
|
| 7 |
from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
|
| 8 |
from src.submission.check_validity import (
|
| 9 |
already_submitted_models,
|
|
|
|
| 26 |
weight_type: str,
|
| 27 |
model_type: str,
|
| 28 |
inference_framework: str,
|
| 29 |
+
debug: bool = False
|
| 30 |
):
|
| 31 |
global REQUESTED_MODELS
|
| 32 |
global USERS_TO_SUBMISSION_DATES
|
| 33 |
if not REQUESTED_MODELS:
|
| 34 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
| 35 |
|
| 36 |
+
if debug:
|
| 37 |
+
QUEUE_REPO = DEBUG_QUEUE_REPO
|
| 38 |
+
|
| 39 |
user_name = ""
|
| 40 |
model_path = model
|
| 41 |
if "/" in model:
|