Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
more info
Browse files- app.py +86 -86
- src/about.py +20 -1
- src/leaderboard/read_evals.py +2 -0
app.py
CHANGED
|
@@ -267,92 +267,92 @@ with demo:
|
|
| 267 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 268 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 269 |
|
| 270 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
|
| 357 |
with gr.Row():
|
| 358 |
with gr.Accordion("📙 Citation", open=False):
|
|
|
|
| 267 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 268 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 269 |
|
| 270 |
+
# with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 271 |
+
# with gr.Column():
|
| 272 |
+
# with gr.Row():
|
| 273 |
+
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 274 |
+
#
|
| 275 |
+
# with gr.Column():
|
| 276 |
+
# with gr.Accordion(
|
| 277 |
+
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 278 |
+
# open=False,
|
| 279 |
+
# ):
|
| 280 |
+
# with gr.Row():
|
| 281 |
+
# finished_eval_table = gr.components.Dataframe(
|
| 282 |
+
# value=finished_eval_queue_df,
|
| 283 |
+
# headers=EVAL_COLS,
|
| 284 |
+
# datatype=EVAL_TYPES,
|
| 285 |
+
# row_count=5,
|
| 286 |
+
# )
|
| 287 |
+
# with gr.Accordion(
|
| 288 |
+
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 289 |
+
# open=False,
|
| 290 |
+
# ):
|
| 291 |
+
# with gr.Row():
|
| 292 |
+
# running_eval_table = gr.components.Dataframe(
|
| 293 |
+
# value=running_eval_queue_df,
|
| 294 |
+
# headers=EVAL_COLS,
|
| 295 |
+
# datatype=EVAL_TYPES,
|
| 296 |
+
# row_count=5,
|
| 297 |
+
# )
|
| 298 |
+
#
|
| 299 |
+
# with gr.Accordion(
|
| 300 |
+
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 301 |
+
# open=False,
|
| 302 |
+
# ):
|
| 303 |
+
# with gr.Row():
|
| 304 |
+
# pending_eval_table = gr.components.Dataframe(
|
| 305 |
+
# value=pending_eval_queue_df,
|
| 306 |
+
# headers=EVAL_COLS,
|
| 307 |
+
# datatype=EVAL_TYPES,
|
| 308 |
+
# row_count=5,
|
| 309 |
+
# )
|
| 310 |
+
# with gr.Row():
|
| 311 |
+
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 312 |
+
#
|
| 313 |
+
# with gr.Row():
|
| 314 |
+
# with gr.Column():
|
| 315 |
+
# model_name_textbox = gr.Textbox(label="Model name")
|
| 316 |
+
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 317 |
+
# model_type = gr.Dropdown(
|
| 318 |
+
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 319 |
+
# label="Model type",
|
| 320 |
+
# multiselect=False,
|
| 321 |
+
# value=None,
|
| 322 |
+
# interactive=True,
|
| 323 |
+
# )
|
| 324 |
+
#
|
| 325 |
+
# with gr.Column():
|
| 326 |
+
# precision = gr.Dropdown(
|
| 327 |
+
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
| 328 |
+
# label="Precision",
|
| 329 |
+
# multiselect=False,
|
| 330 |
+
# value="float16" if DEVICE != "cpu" else "float32",
|
| 331 |
+
# interactive=True,
|
| 332 |
+
# )
|
| 333 |
+
# weight_type = gr.Dropdown(
|
| 334 |
+
# choices=[i.value.name for i in WeightType],
|
| 335 |
+
# label="Weights type",
|
| 336 |
+
# multiselect=False,
|
| 337 |
+
# value="Original",
|
| 338 |
+
# interactive=True,
|
| 339 |
+
# )
|
| 340 |
+
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 341 |
+
#
|
| 342 |
+
# submit_button = gr.Button("Submit Eval")
|
| 343 |
+
# submission_result = gr.Markdown()
|
| 344 |
+
# submit_button.click(
|
| 345 |
+
# add_new_eval,
|
| 346 |
+
# [
|
| 347 |
+
# model_name_textbox,
|
| 348 |
+
# base_model_name_textbox,
|
| 349 |
+
# revision_name_textbox,
|
| 350 |
+
# precision,
|
| 351 |
+
# weight_type,
|
| 352 |
+
# model_type,
|
| 353 |
+
# ],
|
| 354 |
+
# submission_result,
|
| 355 |
+
# )
|
| 356 |
|
| 357 |
with gr.Row():
|
| 358 |
with gr.Accordion("📙 Citation", open=False):
|
src/about.py
CHANGED
|
@@ -48,10 +48,29 @@ _mc suffix means that a model is scored against every possible class (suitable a
|
|
| 48 |
|
| 49 |
# Which evaluations are you running? how can people reproduce what you have?
|
| 50 |
LLM_BENCHMARKS_TEXT = f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
## How it works
|
| 52 |
|
| 53 |
## Reproducibility
|
| 54 |
-
To reproduce our results,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
"""
|
| 57 |
|
|
|
|
| 48 |
|
| 49 |
# Which evaluations are you running? how can people reproduce what you have?
|
| 50 |
LLM_BENCHMARKS_TEXT = f"""
|
| 51 |
+
## Do you want to add your model to the leaderboard?
|
| 52 |
+
|
| 53 |
+
Contact with me: [LinkedIn](https://www.linkedin.com/in/wrobelkrzysztof/)
|
| 54 |
+
|
| 55 |
+
or join our [Discord SpeakLeash](https://discord.gg/3G9DVM39)
|
| 56 |
+
|
| 57 |
## How it works
|
| 58 |
|
| 59 |
## Reproducibility
|
| 60 |
+
To reproduce our results, you need to clone the repository:
|
| 61 |
+
|
| 62 |
+
```
|
| 63 |
+
git clone https://github.com/speakleash/lm-evaluation-harness.git
|
| 64 |
+
cd lm-evaluation-harness
|
| 65 |
+
pip install -e .
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
and run benchmark for 0-shot and 5-shot:
|
| 69 |
+
|
| 70 |
+
```
|
| 71 |
+
lm_eval --model hf --model_args pretrained=Azurro/APT3-1B-Base --tasks polish --num_fewshot 0 --device cuda:0 --batch_size 16 --verbosity DEBUG --output_path results/ --log_samples
|
| 72 |
+
lm_eval --model hf --model_args pretrained=Azurro/APT3-1B-Base --tasks polish --num_fewshot 5 --device cuda:0 --batch_size 16 --verbosity DEBUG --output_path results/ --log_samples
|
| 73 |
+
```
|
| 74 |
|
| 75 |
"""
|
| 76 |
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -268,6 +268,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
| 268 |
eval_name = f"{eval_result.eval_name}_{n_shot}-shot"
|
| 269 |
if eval_name in eval_results.keys():
|
| 270 |
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
|
|
|
| 271 |
else:
|
| 272 |
eval_results[eval_name] = eval_result
|
| 273 |
|
|
@@ -276,6 +277,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
| 276 |
try:
|
| 277 |
print(v)
|
| 278 |
v.to_dict() # we test if the dict version is complete
|
|
|
|
| 279 |
results.append(v)
|
| 280 |
except KeyError: # not all eval values present
|
| 281 |
print(f"not all eval values present {v.eval_name} {v.full_model}")
|
|
|
|
| 268 |
eval_name = f"{eval_result.eval_name}_{n_shot}-shot"
|
| 269 |
if eval_name in eval_results.keys():
|
| 270 |
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
| 271 |
+
#TODO: log updated
|
| 272 |
else:
|
| 273 |
eval_results[eval_name] = eval_result
|
| 274 |
|
|
|
|
| 277 |
try:
|
| 278 |
print(v)
|
| 279 |
v.to_dict() # we test if the dict version is complete
|
| 280 |
+
#if v.results:
|
| 281 |
results.append(v)
|
| 282 |
except KeyError: # not all eval values present
|
| 283 |
print(f"not all eval values present {v.eval_name} {v.full_model}")
|