Spaces:
Paused
Paused
Upload endpoint_handler.py
Browse files- endpoint_handler.py +88 -0
endpoint_handler.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import AutoModel, AutoTokenizer
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
import base64
|
| 6 |
+
from huggingface_hub import login
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
class EndpointHandler:
|
| 10 |
+
def __init__(self, model_dir=None):
|
| 11 |
+
print("[Init] Initializing EndpointHandler...")
|
| 12 |
+
self.load_model()
|
| 13 |
+
|
| 14 |
+
def load_model(self):
|
| 15 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 16 |
+
model_path = "openbmb/MiniCPM-V-4"
|
| 17 |
+
|
| 18 |
+
if hf_token:
|
| 19 |
+
print("[Auth] Logging into Hugging Face Hub with token...")
|
| 20 |
+
login(token=hf_token)
|
| 21 |
+
|
| 22 |
+
print(f"[Model Load] Attempting to load model from: {model_path}")
|
| 23 |
+
try:
|
| 24 |
+
model_path = "/app/models/minicpmv"
|
| 25 |
+
self.model = AutoModel.from_pretrained(
|
| 26 |
+
model_path,
|
| 27 |
+
trust_remote_code=True,
|
| 28 |
+
attn_implementation="sdpa",
|
| 29 |
+
torch_dtype=torch.float16,
|
| 30 |
+
device_map="auto"
|
| 31 |
+
).eval()
|
| 32 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 33 |
+
except Exception as e:
|
| 34 |
+
print(f"[Model Load Failed]: {e}")
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def load_image(self, image_base64):
|
| 38 |
+
try:
|
| 39 |
+
print("[Image Load] Decoding base64 image...")
|
| 40 |
+
image_bytes = base64.b64decode(image_base64)
|
| 41 |
+
image = Image.open(BytesIO(image_bytes)).convert("RGB")
|
| 42 |
+
print("[Image Load] Image successfully decoded and converted to RGB.")
|
| 43 |
+
return image
|
| 44 |
+
except Exception as e:
|
| 45 |
+
print(f"[Image Load Error] {e}")
|
| 46 |
+
raise ValueError(f"Failed to open image from base64 string: {e}")
|
| 47 |
+
|
| 48 |
+
def predict(self, request):
|
| 49 |
+
print(f"[Predict] Received request: {request}")
|
| 50 |
+
|
| 51 |
+
image_base64 = request.get("inputs", {}).get("image")
|
| 52 |
+
question = request.get("inputs", {}).get("question")
|
| 53 |
+
stream = request.get("inputs", {}).get("stream", False)
|
| 54 |
+
|
| 55 |
+
if not image_base64 or not question:
|
| 56 |
+
print("[Predict Error] Missing 'image' or 'question' in the request.")
|
| 57 |
+
return {"error": "Missing 'image' or 'question' in inputs."}
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
image = self.load_image(image_base64)
|
| 61 |
+
msgs = [{"role": "user", "content": [image, question]}]
|
| 62 |
+
|
| 63 |
+
print(f"[Predict] Asking model with question: {question}")
|
| 64 |
+
print("[Predict] Starting chat inference...")
|
| 65 |
+
|
| 66 |
+
res = self.model.chat(
|
| 67 |
+
image=None,
|
| 68 |
+
msgs=msgs,
|
| 69 |
+
tokenizer=self.tokenizer,
|
| 70 |
+
sampling=True,
|
| 71 |
+
stream=stream
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
if stream:
|
| 75 |
+
for new_text in res:
|
| 76 |
+
yield {"output": new_text}
|
| 77 |
+
else:
|
| 78 |
+
generated_text = "".join(res)
|
| 79 |
+
print("[Predict] Inference complete.")
|
| 80 |
+
return {"output": generated_text}
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"[Predict Error] {e}")
|
| 84 |
+
return {"error": str(e)}
|
| 85 |
+
|
| 86 |
+
def __call__(self, data):
|
| 87 |
+
print("[__call__] Invoked handler with data.")
|
| 88 |
+
return self.predict(data)
|