Spaces:
Running
on
L4
Running
on
L4
| # coding=utf-8 | |
| # Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch DINOv2 model.""" | |
| import collections.abc | |
| import math | |
| from dataclasses import dataclass | |
| from typing import Dict, List, Optional, Set, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
| from transformers.activations import ACT2FN | |
| from transformers.modeling_outputs import ( | |
| BackboneOutput, | |
| BaseModelOutput, | |
| BaseModelOutputWithPooling, | |
| ImageClassifierOutput, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.models.dinov2.configuration_dinov2 import Dinov2Config | |
| from transformers.pytorch_utils import ( | |
| find_pruneable_heads_and_indices, | |
| prune_linear_layer, | |
| ) | |
| from transformers.utils import ( | |
| add_code_sample_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.utils.backbone_utils import BackboneMixin | |
| logger = logging.get_logger(__name__) | |
| # General docstring | |
| _CONFIG_FOR_DOC = "Dinov2Config" | |
| # Base docstring | |
| _CHECKPOINT_FOR_DOC = "facebook/dinov2-base" | |
| _EXPECTED_OUTPUT_SHAPE = [1, 257, 768] | |
| # Image classification docstring | |
| _IMAGE_CLASS_CHECKPOINT = "facebook/dinov2-base" | |
| DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "facebook/dinov2-base", | |
| # See all DINOv2 models at https://huggingface.co/models?filter=dinov2 | |
| ] | |
| class Dinov2Embeddings(nn.Module): | |
| """ | |
| Construct the CLS token, mask token, position and patch embeddings. | |
| """ | |
| def __init__(self, config: Dinov2Config) -> None: | |
| super().__init__() | |
| self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) | |
| # register as mask token as it's not used in optimization | |
| # to avoid the use of find_unused_parameters_true | |
| # self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size)) | |
| self.register_buffer("mask_token", torch.zeros(1, config.hidden_size)) | |
| self.patch_embeddings = Dinov2PatchEmbeddings(config) | |
| num_patches = self.patch_embeddings.num_patches | |
| self.position_embeddings = nn.Parameter( | |
| torch.randn(1, num_patches + 1, config.hidden_size) | |
| ) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.config = config | |
| def interpolate_pos_encoding( | |
| self, embeddings: torch.Tensor, height: int, width: int | |
| ) -> torch.Tensor: | |
| """ | |
| This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher | |
| resolution images. | |
| Source: | |
| https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 | |
| """ | |
| num_patches = embeddings.shape[1] - 1 | |
| num_positions = self.position_embeddings.shape[1] - 1 | |
| if num_patches == num_positions and height == width: | |
| return self.position_embeddings | |
| class_pos_embed = self.position_embeddings[:, 0] | |
| patch_pos_embed = self.position_embeddings[:, 1:] | |
| dim = embeddings.shape[-1] | |
| height = height // self.config.patch_size | |
| width = width // self.config.patch_size | |
| # we add a small number to avoid floating point error in the interpolation | |
| # see discussion at https://github.com/facebookresearch/dino/issues/8 | |
| height, width = height + 0.1, width + 0.1 | |
| patch_pos_embed = patch_pos_embed.reshape( | |
| 1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim | |
| ) | |
| patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) | |
| patch_pos_embed = nn.functional.interpolate( | |
| patch_pos_embed, | |
| scale_factor=( | |
| height / math.sqrt(num_positions), | |
| width / math.sqrt(num_positions), | |
| ), | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| if ( | |
| int(height) != patch_pos_embed.shape[-2] | |
| or int(width) != patch_pos_embed.shape[-1] | |
| ): | |
| raise ValueError( | |
| "Width or height does not match with the interpolated position embeddings" | |
| ) | |
| patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
| return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
| def forward( | |
| self, | |
| pixel_values: torch.Tensor, | |
| bool_masked_pos: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| batch_size, _, height, width = pixel_values.shape | |
| patch_embeddings = self.patch_embeddings(pixel_values) | |
| embeddings = patch_embeddings | |
| if bool_masked_pos is not None: | |
| embeddings = torch.where( | |
| bool_masked_pos.unsqueeze(-1), | |
| self.mask_token.to(embeddings.dtype).unsqueeze(0), | |
| embeddings, | |
| ) | |
| # add the [CLS] token to the embedded patch tokens | |
| cls_tokens = self.cls_token.expand(batch_size, -1, -1) | |
| embeddings = torch.cat((cls_tokens, embeddings), dim=1) | |
| # add positional encoding to each token | |
| embeddings = embeddings + self.interpolate_pos_encoding( | |
| embeddings, height, width | |
| ) | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| class Dinov2PatchEmbeddings(nn.Module): | |
| """ | |
| This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial | |
| `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a | |
| Transformer. | |
| """ | |
| def __init__(self, config): | |
| super().__init__() | |
| image_size, patch_size = config.image_size, config.patch_size | |
| num_channels, hidden_size = config.num_channels, config.hidden_size | |
| image_size = ( | |
| image_size | |
| if isinstance(image_size, collections.abc.Iterable) | |
| else (image_size, image_size) | |
| ) | |
| patch_size = ( | |
| patch_size | |
| if isinstance(patch_size, collections.abc.Iterable) | |
| else (patch_size, patch_size) | |
| ) | |
| num_patches = (image_size[1] // patch_size[1]) * ( | |
| image_size[0] // patch_size[0] | |
| ) | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.num_channels = num_channels | |
| self.num_patches = num_patches | |
| self.projection = nn.Conv2d( | |
| num_channels, hidden_size, kernel_size=patch_size, stride=patch_size | |
| ) | |
| def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: | |
| """ | |
| num_channels = pixel_values.shape[1] | |
| if num_channels != self.num_channels: | |
| raise ValueError( | |
| "Make sure that the channel dimension of the pixel values match with the one set in the configuration." | |
| f" Expected {self.num_channels} but got {num_channels}." | |
| ) | |
| """ | |
| embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) | |
| return embeddings | |
| # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Dinov2 | |
| class Dinov2SelfAttention(nn.Module): | |
| def __init__(self, config: Dinov2Config) -> None: | |
| super().__init__() | |
| if config.hidden_size % config.num_attention_heads != 0 and not hasattr( | |
| config, "embedding_size" | |
| ): | |
| raise ValueError( | |
| f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " | |
| f"heads {config.num_attention_heads}." | |
| ) | |
| self.num_attention_heads = config.num_attention_heads | |
| self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
| self.all_head_size = self.num_attention_heads * self.attention_head_size | |
| self.attention_probs_dropout_prob = config.attention_probs_dropout_prob | |
| self.query = nn.Linear( | |
| config.hidden_size, self.all_head_size, bias=config.qkv_bias | |
| ) | |
| self.key = nn.Linear( | |
| config.hidden_size, self.all_head_size, bias=config.qkv_bias | |
| ) | |
| self.value = nn.Linear( | |
| config.hidden_size, self.all_head_size, bias=config.qkv_bias | |
| ) | |
| self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
| def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | |
| new_x_shape = x.size()[:-1] + ( | |
| self.num_attention_heads, | |
| self.attention_head_size, | |
| ) | |
| x = x.view(new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def forward( | |
| self, | |
| hidden_states, | |
| head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
| mixed_query_layer = self.query(hidden_states) | |
| if hasattr(F, "scaled_dot_product_attention"): | |
| assert head_mask is None and not output_attentions | |
| new_size = hidden_states.size()[:-1] + ( | |
| self.num_attention_heads, | |
| self.attention_head_size, | |
| ) | |
| key_layer = self.key(hidden_states).reshape(new_size).transpose(1, 2) | |
| value_layer = self.value(hidden_states).reshape(new_size).transpose(1, 2) | |
| query_layer = mixed_query_layer.reshape(new_size).transpose(1, 2) | |
| context_layer = F.scaled_dot_product_attention( | |
| query_layer, | |
| key_layer, | |
| value_layer, | |
| dropout_p=self.attention_probs_dropout_prob, | |
| is_causal=False, | |
| ) | |
| context_layer = context_layer.transpose(1, 2).reshape( | |
| *hidden_states.size()[:-1], -1 | |
| ) | |
| else: | |
| key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
| value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
| query_layer = self.transpose_for_scores(mixed_query_layer) | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
| attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| context_layer = torch.matmul(attention_probs, value_layer) | |
| context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
| new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
| context_layer = context_layer.view(new_context_layer_shape) | |
| outputs = ( | |
| (context_layer, attention_probs) if output_attentions else (context_layer,) | |
| ) | |
| return outputs | |
| # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Dinov2 | |
| class Dinov2SelfOutput(nn.Module): | |
| """ | |
| The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the | |
| layernorm applied before each block. | |
| """ | |
| def __init__(self, config: Dinov2Config) -> None: | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward( | |
| self, hidden_states: torch.Tensor, input_tensor: torch.Tensor | |
| ) -> torch.Tensor: | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Dinov2 | |
| class Dinov2Attention(nn.Module): | |
| def __init__(self, config: Dinov2Config) -> None: | |
| super().__init__() | |
| self.attention = Dinov2SelfAttention(config) | |
| self.output = Dinov2SelfOutput(config) | |
| self.pruned_heads = set() | |
| def prune_heads(self, heads: Set[int]) -> None: | |
| if len(heads) == 0: | |
| return | |
| heads, index = find_pruneable_heads_and_indices( | |
| heads, | |
| self.attention.num_attention_heads, | |
| self.attention.attention_head_size, | |
| self.pruned_heads, | |
| ) | |
| # Prune linear layers | |
| self.attention.query = prune_linear_layer(self.attention.query, index) | |
| self.attention.key = prune_linear_layer(self.attention.key, index) | |
| self.attention.value = prune_linear_layer(self.attention.value, index) | |
| self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
| # Update hyper params and store pruned heads | |
| self.attention.num_attention_heads = self.attention.num_attention_heads - len( | |
| heads | |
| ) | |
| self.attention.all_head_size = ( | |
| self.attention.attention_head_size * self.attention.num_attention_heads | |
| ) | |
| self.pruned_heads = self.pruned_heads.union(heads) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
| self_outputs = self.attention(hidden_states, head_mask, output_attentions) | |
| attention_output = self.output(self_outputs[0], hidden_states) | |
| outputs = (attention_output,) + self_outputs[ | |
| 1: | |
| ] # add attentions if we output them | |
| return outputs | |
| class Dinov2LayerScale(nn.Module): | |
| def __init__(self, config) -> None: | |
| super().__init__() | |
| self.lambda1 = nn.Parameter( | |
| config.layerscale_value * torch.ones(config.hidden_size) | |
| ) | |
| def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: | |
| return hidden_state * self.lambda1 | |
| # Copied from transformers.models.beit.modeling_beit.drop_path | |
| def drop_path( | |
| input: torch.Tensor, drop_prob: float = 0.0, training: bool = False | |
| ) -> torch.Tensor: | |
| """ | |
| Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, | |
| however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
| See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the | |
| layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the | |
| argument. | |
| """ | |
| if drop_prob == 0.0 or not training: | |
| return input | |
| keep_prob = 1 - drop_prob | |
| shape = (input.shape[0],) + (1,) * ( | |
| input.ndim - 1 | |
| ) # work with diff dim tensors, not just 2D ConvNets | |
| random_tensor = keep_prob + torch.rand( | |
| shape, dtype=input.dtype, device=input.device | |
| ) | |
| random_tensor.floor_() # binarize | |
| output = input.div(keep_prob) * random_tensor | |
| return output | |
| # Copied from transformers.models.beit.modeling_beit.BeitDropPath | |
| class Dinov2DropPath(nn.Module): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
| def __init__(self, drop_prob: Optional[float] = None) -> None: | |
| super().__init__() | |
| self.drop_prob = drop_prob | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| return drop_path(hidden_states, self.drop_prob, self.training) | |
| def extra_repr(self) -> str: | |
| return "p={}".format(self.drop_prob) | |
| class Dinov2MLP(nn.Module): | |
| def __init__(self, config) -> None: | |
| super().__init__() | |
| in_features = out_features = config.hidden_size | |
| hidden_features = int(config.hidden_size * config.mlp_ratio) | |
| self.fc1 = nn.Linear(in_features, hidden_features, bias=True) | |
| if isinstance(config.hidden_act, str): | |
| self.activation = ACT2FN[config.hidden_act] | |
| else: | |
| self.activation = config.hidden_act | |
| self.fc2 = nn.Linear(hidden_features, out_features, bias=True) | |
| def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: | |
| hidden_state = self.fc1(hidden_state) | |
| hidden_state = self.activation(hidden_state) | |
| hidden_state = self.fc2(hidden_state) | |
| return hidden_state | |
| class Dinov2SwiGLUFFN(nn.Module): | |
| def __init__(self, config) -> None: | |
| super().__init__() | |
| in_features = out_features = config.hidden_size | |
| hidden_features = int(config.hidden_size * config.mlp_ratio) | |
| hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 | |
| self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True) | |
| self.weights_out = nn.Linear(hidden_features, out_features, bias=True) | |
| def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: | |
| hidden_state = self.weights_in(hidden_state) | |
| x1, x2 = hidden_state.chunk(2, dim=-1) | |
| hidden = nn.functional.silu(x1) * x2 | |
| return self.weights_out(hidden) | |
| class Dinov2Layer(nn.Module): | |
| """This corresponds to the Block class in the original implementation.""" | |
| def __init__(self, config: Dinov2Config) -> None: | |
| super().__init__() | |
| self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.norm1_modulation = None | |
| self.attention = Dinov2Attention(config) | |
| self.layer_scale1 = Dinov2LayerScale(config) | |
| self.drop_path1 = ( | |
| Dinov2DropPath(config.drop_path_rate) | |
| if config.drop_path_rate > 0.0 | |
| else nn.Identity() | |
| ) | |
| self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.norm2_modulation = None | |
| if config.use_swiglu_ffn: | |
| self.mlp = Dinov2SwiGLUFFN(config) | |
| else: | |
| self.mlp = Dinov2MLP(config) | |
| self.layer_scale2 = Dinov2LayerScale(config) | |
| self.drop_path2 = ( | |
| Dinov2DropPath(config.drop_path_rate) | |
| if config.drop_path_rate > 0.0 | |
| else nn.Identity() | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| head_mask: Optional[torch.Tensor] = None, | |
| modulation_cond: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
| hidden_states_norm = self.norm1(hidden_states) | |
| if self.norm1_modulation is not None: | |
| assert modulation_cond is not None | |
| hidden_states_norm = self.norm1_modulation( | |
| hidden_states_norm, modulation_cond | |
| ) | |
| self_attention_outputs = self.attention( | |
| hidden_states_norm, # in Dinov2, layernorm is applied before self-attention | |
| head_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| attention_output = self_attention_outputs[0] | |
| attention_output = self.layer_scale1(attention_output) | |
| outputs = self_attention_outputs[ | |
| 1: | |
| ] # add self attentions if we output attention weights | |
| # first residual connection | |
| hidden_states = attention_output + hidden_states | |
| # in Dinov2, layernorm is also applied after self-attention | |
| layer_output = self.norm2(hidden_states) | |
| if self.norm2_modulation is not None: | |
| assert modulation_cond is not None | |
| layer_output = self.norm2_modulation(layer_output, modulation_cond) | |
| layer_output = self.mlp(layer_output) | |
| layer_output = self.layer_scale2(layer_output) | |
| # second residual connection | |
| layer_output = layer_output + hidden_states | |
| outputs = (layer_output,) + outputs | |
| return outputs | |
| def register_ada_norm_modulation(self, norm1_mod: nn.Module, norm2_mod: nn.Module): | |
| self.norm1_modulation = norm1_mod | |
| self.norm2_modulation = norm2_mod | |
| # Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2 | |
| class Dinov2Encoder(nn.Module): | |
| def __init__(self, config: Dinov2Config) -> None: | |
| super().__init__() | |
| self.config = config | |
| self.layer = nn.ModuleList( | |
| [Dinov2Layer(config) for _ in range(config.num_hidden_layers)] | |
| ) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| head_mask: Optional[torch.Tensor] = None, | |
| modulation_cond: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| output_hidden_states: bool = False, | |
| return_dict: bool = True, | |
| ) -> Union[tuple, BaseModelOutput]: | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attentions = () if output_attentions else None | |
| for i, layer_module in enumerate(self.layer): | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| layer_head_mask = head_mask[i] if head_mask is not None else None | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(layer_module), | |
| hidden_states, | |
| layer_head_mask, | |
| modulation_cond, | |
| use_reentrant=False, | |
| ) | |
| else: | |
| layer_outputs = layer_module( | |
| hidden_states, layer_head_mask, modulation_cond, output_attentions | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [hidden_states, all_hidden_states, all_self_attentions] | |
| if v is not None | |
| ) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| ) | |
| class Dinov2PreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = Dinov2Config | |
| base_model_prefix = "dinov2" | |
| main_input_name = "pixel_values" | |
| supports_gradient_checkpointing = True | |
| def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: | |
| """Initialize the weights""" | |
| if isinstance(module, (nn.Linear, nn.Conv2d)): | |
| # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid | |
| # `trunc_normal_cpu` not implemented in `half` issues | |
| module.weight.data = nn.init.trunc_normal_( | |
| module.weight.data.to(torch.float32), | |
| mean=0.0, | |
| std=self.config.initializer_range, | |
| ).to(module.weight.dtype) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| elif isinstance(module, Dinov2Embeddings): | |
| module.position_embeddings.data = nn.init.trunc_normal_( | |
| module.position_embeddings.data.to(torch.float32), | |
| mean=0.0, | |
| std=self.config.initializer_range, | |
| ).to(module.position_embeddings.dtype) | |
| module.cls_token.data = nn.init.trunc_normal_( | |
| module.cls_token.data.to(torch.float32), | |
| mean=0.0, | |
| std=self.config.initializer_range, | |
| ).to(module.cls_token.dtype) | |
| def _set_gradient_checkpointing( | |
| self, module: Dinov2Encoder, value: bool = False | |
| ) -> None: | |
| if isinstance(module, Dinov2Encoder): | |
| module.gradient_checkpointing = value | |
| DINOV2_START_DOCSTRING = r""" | |
| This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
| as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
| behavior. | |
| Parameters: | |
| config ([`Dinov2Config`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| DINOV2_BASE_INPUTS_DOCSTRING = r""" | |
| Args: | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
| [`BitImageProcessor.preprocess`] for details. | |
| bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`): | |
| Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for | |
| pre-training. | |
| head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| DINOV2_INPUTS_DOCSTRING = r""" | |
| Args: | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
| [`BitImageProcessor.preprocess`] for details. | |
| head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class CustomBaseModelOutputWithPooling(BaseModelOutputWithPooling): | |
| patch_embeddings: Optional[torch.FloatTensor] = None | |
| class Dinov2Model(Dinov2PreTrainedModel): | |
| def __init__(self, config: Dinov2Config): | |
| super().__init__(config) | |
| self.config = config | |
| self.embeddings = Dinov2Embeddings(config) | |
| self.encoder = Dinov2Encoder(config) | |
| self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> Dinov2PatchEmbeddings: | |
| return self.embeddings.patch_embeddings | |
| def expand_input_channels(self, extra_input_channels: int) -> None: | |
| if extra_input_channels == 0: | |
| return | |
| conv_old = self.embeddings.patch_embeddings.projection | |
| conv_new = nn.Conv2d( | |
| self.config.num_channels + extra_input_channels, | |
| self.config.hidden_size, | |
| kernel_size=self.config.patch_size, | |
| stride=self.config.patch_size, | |
| ).to(self.device) | |
| with torch.no_grad(): | |
| conv_new.weight[:, :3] = conv_old.weight | |
| conv_new.bias = conv_old.bias | |
| self.embeddings.patch_embeddings.projection = conv_new | |
| del conv_old | |
| def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
| class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.Tensor] = None, | |
| bool_masked_pos: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| modulation_cond: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| if pixel_values is None: | |
| raise ValueError("You have to specify pixel_values") | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
| # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
| head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
| embedding_output = self.embeddings( | |
| pixel_values, bool_masked_pos=bool_masked_pos | |
| ) | |
| encoder_outputs = self.encoder( | |
| embedding_output, | |
| head_mask=head_mask, | |
| modulation_cond=modulation_cond, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = encoder_outputs[0] | |
| sequence_output = self.layernorm(sequence_output) | |
| pooled_output = sequence_output[:, 0, :] | |
| if not return_dict: | |
| head_outputs = (sequence_output, pooled_output) | |
| return head_outputs + encoder_outputs[1:] | |
| return CustomBaseModelOutputWithPooling( | |
| last_hidden_state=sequence_output, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| patch_embeddings=embedding_output, | |
| ) | |
| def set_gradient_checkpointing(self, value: bool = False) -> None: | |
| self._set_gradient_checkpointing(self.encoder, value) | |
| class Dinov2ForImageClassification(Dinov2PreTrainedModel): | |
| def __init__(self, config: Dinov2Config) -> None: | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.dinov2 = Dinov2Model(config) | |
| # Classifier head | |
| self.classifier = ( | |
| nn.Linear(config.hidden_size * 2, config.num_labels) | |
| if config.num_labels > 0 | |
| else nn.Identity() | |
| ) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[tuple, ImageClassifierOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| outputs = self.dinov2( | |
| pixel_values, | |
| head_mask=head_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] # batch_size, sequence_length, hidden_size | |
| cls_token = sequence_output[:, 0] | |
| patch_tokens = sequence_output[:, 1:] | |
| linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1) | |
| logits = self.classifier(linear_input) | |
| loss = None | |
| if labels is not None: | |
| # move labels to correct device to enable model parallelism | |
| labels = labels.to(logits.device) | |
| if self.config.problem_type is None: | |
| if self.num_labels == 1: | |
| self.config.problem_type = "regression" | |
| elif self.num_labels > 1 and ( | |
| labels.dtype == torch.long or labels.dtype == torch.int | |
| ): | |
| self.config.problem_type = "single_label_classification" | |
| else: | |
| self.config.problem_type = "multi_label_classification" | |
| if self.config.problem_type == "regression": | |
| loss_fct = MSELoss() | |
| if self.num_labels == 1: | |
| loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
| else: | |
| loss = loss_fct(logits, labels) | |
| elif self.config.problem_type == "single_label_classification": | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
| elif self.config.problem_type == "multi_label_classification": | |
| loss_fct = BCEWithLogitsLoss() | |
| loss = loss_fct(logits, labels) | |
| if not return_dict: | |
| output = (logits,) + outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return ImageClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class Dinov2Backbone(Dinov2PreTrainedModel, BackboneMixin): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| super()._init_backbone(config) | |
| self.num_features = [ | |
| config.hidden_size for _ in range(config.num_hidden_layers + 1) | |
| ] | |
| self.embeddings = Dinov2Embeddings(config) | |
| self.encoder = Dinov2Encoder(config) | |
| self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> Dinov2PatchEmbeddings: | |
| return self.embeddings.patch_embeddings | |
| def forward( | |
| self, | |
| pixel_values: torch.Tensor, | |
| output_hidden_states: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> BackboneOutput: | |
| """ | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoImageProcessor, AutoBackbone | |
| >>> import torch | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base") | |
| >>> model = AutoBackbone.from_pretrained( | |
| ... "facebook/dinov2-base", out_features=["stage2", "stage5", "stage8", "stage11"] | |
| ... ) | |
| >>> inputs = processor(image, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> feature_maps = outputs.feature_maps | |
| >>> list(feature_maps[-1].shape) | |
| [1, 768, 16, 16] | |
| ```""" | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| embedding_output = self.embeddings(pixel_values) | |
| outputs = self.encoder( | |
| embedding_output, | |
| output_hidden_states=True, | |
| output_attentions=output_attentions, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = outputs.hidden_states if return_dict else outputs[1] | |
| feature_maps = () | |
| for stage, hidden_state in zip(self.stage_names, hidden_states): | |
| if stage in self.out_features: | |
| if self.config.apply_layernorm: | |
| hidden_state = self.layernorm(hidden_state) | |
| if self.config.reshape_hidden_states: | |
| batch_size, _, height, width = pixel_values.shape | |
| patch_size = self.config.patch_size | |
| hidden_state = hidden_state[:, 1:, :].reshape( | |
| batch_size, width // patch_size, height // patch_size, -1 | |
| ) | |
| hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() | |
| feature_maps += (hidden_state,) | |
| if not return_dict: | |
| if output_hidden_states: | |
| output = (feature_maps,) + outputs[1:] | |
| else: | |
| output = (feature_maps,) + outputs[2:] | |
| return output | |
| return BackboneOutput( | |
| feature_maps=feature_maps, | |
| hidden_states=outputs.hidden_states if output_hidden_states else None, | |
| attentions=outputs.attentions if output_attentions else None, | |
| ) | |
| class CustomPatchEmbeddings(nn.Module): | |
| """ | |
| This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial | |
| `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a | |
| Transformer. | |
| """ | |
| def __init__( | |
| self, image_size: int, patch_size: int, num_channels: int, hidden_size: int | |
| ): | |
| super().__init__() | |
| image_size = ( | |
| image_size | |
| if isinstance(image_size, collections.abc.Iterable) | |
| else (image_size, image_size) | |
| ) | |
| patch_size = ( | |
| patch_size | |
| if isinstance(patch_size, collections.abc.Iterable) | |
| else (patch_size, patch_size) | |
| ) | |
| num_patches = (image_size[1] // patch_size[1]) * ( | |
| image_size[0] // patch_size[0] | |
| ) | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.num_channels = num_channels | |
| self.num_patches = num_patches | |
| self.projection = nn.Conv2d( | |
| num_channels, hidden_size, kernel_size=patch_size, stride=patch_size | |
| ) | |
| def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: | |
| num_channels = pixel_values.shape[1] | |
| if num_channels != self.num_channels: | |
| raise ValueError( | |
| "Make sure that the channel dimension of the pixel values match with the one set in the configuration." | |
| f" Expected {self.num_channels} but got {num_channels}." | |
| ) | |
| embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) | |
| return embeddings | |
| class CustomEmbeddings(nn.Module): | |
| """ | |
| Construct the CLS token, mask token, position and patch embeddings. | |
| """ | |
| def __init__( | |
| self, image_size: int, patch_size: int, num_channels: int, hidden_size: int | |
| ) -> None: | |
| super().__init__() | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.num_channels = num_channels | |
| self.hidden_size = hidden_size | |
| self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size)) | |
| self.patch_embeddings = CustomPatchEmbeddings( | |
| image_size, patch_size, num_channels, hidden_size | |
| ) | |
| num_patches = self.patch_embeddings.num_patches | |
| self.position_embeddings = nn.Parameter( | |
| torch.randn(1, num_patches + 1, self.hidden_size) | |
| ) | |
| def interpolate_pos_encoding( | |
| self, embeddings: torch.Tensor, height: int, width: int | |
| ) -> torch.Tensor: | |
| """ | |
| This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher | |
| resolution images. | |
| Source: | |
| https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 | |
| """ | |
| num_patches = embeddings.shape[1] - 1 | |
| num_positions = self.position_embeddings.shape[1] - 1 | |
| if num_patches == num_positions and height == width: | |
| return self.position_embeddings | |
| class_pos_embed = self.position_embeddings[:, 0] | |
| patch_pos_embed = self.position_embeddings[:, 1:] | |
| dim = embeddings.shape[-1] | |
| height = height // self.patch_size | |
| width = width // self.patch_size | |
| # we add a small number to avoid floating point error in the interpolation | |
| # see discussion at https://github.com/facebookresearch/dino/issues/8 | |
| height, width = height + 0.1, width + 0.1 | |
| patch_pos_embed = patch_pos_embed.reshape( | |
| 1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim | |
| ) | |
| patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) | |
| patch_pos_embed = nn.functional.interpolate( | |
| patch_pos_embed, | |
| scale_factor=( | |
| height / math.sqrt(num_positions), | |
| width / math.sqrt(num_positions), | |
| ), | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| if ( | |
| int(height) != patch_pos_embed.shape[-2] | |
| or int(width) != patch_pos_embed.shape[-1] | |
| ): | |
| raise ValueError( | |
| "Width or height does not match with the interpolated position embeddings" | |
| ) | |
| patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
| return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
| def forward( | |
| self, | |
| pixel_values: torch.Tensor, | |
| ) -> torch.Tensor: | |
| batch_size, _, height, width = pixel_values.shape | |
| patch_embeddings = self.patch_embeddings(pixel_values) | |
| embeddings = patch_embeddings | |
| # add the [CLS] token to the embedded patch tokens | |
| cls_tokens = self.cls_token.expand(batch_size, -1, -1) | |
| embeddings = torch.cat((cls_tokens, embeddings), dim=1) | |
| # add positional encoding to each token | |
| embeddings = embeddings + self.interpolate_pos_encoding( | |
| embeddings, height, width | |
| ) | |
| return embeddings | |