Spaces:
Running
on
L4
Running
on
L4
| import base64 | |
| import logging | |
| import os | |
| import random | |
| import sys | |
| import comfy.model_management | |
| import folder_paths | |
| import numpy as np | |
| import torch | |
| import trimesh | |
| from PIL import Image | |
| from trimesh.exchange import gltf | |
| sys.path.append(os.path.dirname(__file__)) | |
| from spar3d.models.mesh import QUAD_REMESH_AVAILABLE, TRIANGLE_REMESH_AVAILABLE | |
| from spar3d.system import SPAR3D | |
| from spar3d.utils import foreground_crop | |
| SPAR3D_CATEGORY = "SPAR3D" | |
| SPAR3D_MODEL_NAME = "stabilityai/spar3d" | |
| class SPAR3DLoader: | |
| CATEGORY = SPAR3D_CATEGORY | |
| FUNCTION = "load" | |
| RETURN_NAMES = ("spar3d_model",) | |
| RETURN_TYPES = ("SPAR3D_MODEL",) | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "low_vram_mode": ("BOOLEAN", {"default": False}), | |
| } | |
| } | |
| def load(self, low_vram_mode=False): | |
| device = comfy.model_management.get_torch_device() | |
| model = SPAR3D.from_pretrained( | |
| SPAR3D_MODEL_NAME, | |
| config_name="config.yaml", | |
| weight_name="model.safetensors", | |
| low_vram_mode=low_vram_mode, | |
| ) | |
| model.to(device) | |
| model.eval() | |
| return (model,) | |
| class SPAR3DPreview: | |
| CATEGORY = SPAR3D_CATEGORY | |
| FUNCTION = "preview" | |
| OUTPUT_NODE = True | |
| RETURN_TYPES = () | |
| def INPUT_TYPES(s): | |
| return {"required": {"mesh": ("MESH",)}} | |
| def preview(self, mesh): | |
| glbs = [] | |
| for m in mesh: | |
| scene = trimesh.Scene(m) | |
| glb_data = gltf.export_glb(scene, include_normals=True) | |
| glb_base64 = base64.b64encode(glb_data).decode("utf-8") | |
| glbs.append(glb_base64) | |
| return {"ui": {"glbs": glbs}} | |
| class SPAR3DSampler: | |
| CATEGORY = SPAR3D_CATEGORY | |
| FUNCTION = "predict" | |
| RETURN_NAMES = ("mesh", "pointcloud") | |
| RETURN_TYPES = ("MESH", "POINTCLOUD") | |
| def INPUT_TYPES(s): | |
| remesh_choices = ["none"] | |
| if TRIANGLE_REMESH_AVAILABLE: | |
| remesh_choices.append("triangle") | |
| if QUAD_REMESH_AVAILABLE: | |
| remesh_choices.append("quad") | |
| opt_dict = { | |
| "mask": ("MASK",), | |
| "pointcloud": ("POINTCLOUD",), | |
| "target_type": (["none", "vertex", "face"],), | |
| "target_count": ( | |
| "INT", | |
| {"default": 1000, "min": 3, "max": 20000, "step": 1}, | |
| ), | |
| "guidance_scale": ( | |
| "FLOAT", | |
| {"default": 3.0, "min": 1.0, "max": 5.0, "step": 0.05}, | |
| ), | |
| "seed": ( | |
| "INT", | |
| {"default": 42, "min": 0, "max": 2**32 - 1, "step": 1}, | |
| ), | |
| } | |
| if TRIANGLE_REMESH_AVAILABLE or QUAD_REMESH_AVAILABLE: | |
| opt_dict["remesh"] = (remesh_choices,) | |
| return { | |
| "required": { | |
| "model": ("SPAR3D_MODEL",), | |
| "image": ("IMAGE",), | |
| "foreground_ratio": ( | |
| "FLOAT", | |
| {"default": 1.3, "min": 1.0, "max": 2.0, "step": 0.01}, | |
| ), | |
| "texture_resolution": ( | |
| "INT", | |
| {"default": 1024, "min": 512, "max": 2048, "step": 256}, | |
| ), | |
| }, | |
| "optional": opt_dict, | |
| } | |
| def predict( | |
| s, | |
| model, | |
| image, | |
| mask, | |
| foreground_ratio, | |
| texture_resolution, | |
| pointcloud=None, | |
| remesh="none", | |
| target_type="none", | |
| target_count=1000, | |
| guidance_scale=3.0, | |
| seed=42, | |
| ): | |
| if image.shape[0] != 1: | |
| raise ValueError("Only one image can be processed at a time") | |
| vertex_count = ( | |
| -1 | |
| if target_type == "none" | |
| else (target_count // 2 if target_type == "face" else target_count) | |
| ) | |
| pil_image = Image.fromarray( | |
| torch.clamp(torch.round(255.0 * image[0]), 0, 255) | |
| .type(torch.uint8) | |
| .cpu() | |
| .numpy() | |
| ) | |
| if mask is not None: | |
| print("Using Mask") | |
| mask_np = np.clip(255.0 * mask[0].detach().cpu().numpy(), 0, 255).astype( | |
| np.uint8 | |
| ) | |
| mask_pil = Image.fromarray(mask_np, mode="L") | |
| pil_image.putalpha(mask_pil) | |
| else: | |
| if image.shape[3] != 4: | |
| print("No mask or alpha channel detected, Converting to RGBA") | |
| pil_image = pil_image.convert("RGBA") | |
| pil_image = foreground_crop(pil_image, foreground_ratio) | |
| model.cfg.guidance_scale = guidance_scale | |
| random.seed(seed) | |
| torch.manual_seed(seed) | |
| np.random.seed(seed) | |
| print(remesh) | |
| with torch.no_grad(): | |
| with torch.autocast(device_type="cuda", dtype=torch.float16): | |
| if not TRIANGLE_REMESH_AVAILABLE and remesh == "triangle": | |
| raise ImportError( | |
| "Triangle remeshing requires gpytoolbox to be installed" | |
| ) | |
| if not QUAD_REMESH_AVAILABLE and remesh == "quad": | |
| raise ImportError("Quad remeshing requires pynim to be installed") | |
| mesh, glob_dict = model.run_image( | |
| pil_image, | |
| bake_resolution=texture_resolution, | |
| pointcloud=pointcloud, | |
| remesh=remesh, | |
| vertex_count=vertex_count, | |
| ) | |
| if mesh.vertices.shape[0] == 0: | |
| raise ValueError("No subject detected in the image") | |
| return ( | |
| [mesh], | |
| glob_dict["pointcloud"].view(-1).detach().cpu().numpy().tolist(), | |
| ) | |
| class SPAR3DSave: | |
| CATEGORY = SPAR3D_CATEGORY | |
| FUNCTION = "save" | |
| OUTPUT_NODE = True | |
| RETURN_TYPES = () | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "mesh": ("MESH",), | |
| "filename_prefix": ("STRING", {"default": "SPAR3D"}), | |
| } | |
| } | |
| def __init__(self): | |
| self.type = "output" | |
| def save(self, mesh, filename_prefix): | |
| output_dir = folder_paths.get_output_directory() | |
| glbs = [] | |
| for idx, m in enumerate(mesh): | |
| scene = trimesh.Scene(m) | |
| glb_data = gltf.export_glb(scene, include_normals=True) | |
| logging.info(f"Generated GLB model with {len(glb_data)} bytes") | |
| full_output_folder, filename, counter, subfolder, filename_prefix = ( | |
| folder_paths.get_save_image_path(filename_prefix, output_dir) | |
| ) | |
| filename = filename.replace("%batch_num%", str(idx)) | |
| out_path = os.path.join(full_output_folder, f"{filename}_{counter:05}_.glb") | |
| with open(out_path, "wb") as f: | |
| f.write(glb_data) | |
| glbs.append(base64.b64encode(glb_data).decode("utf-8")) | |
| return {"ui": {"glbs": glbs}} | |
| class SPAR3DPointCloudLoader: | |
| CATEGORY = SPAR3D_CATEGORY | |
| FUNCTION = "load_pointcloud" | |
| RETURN_TYPES = ("POINTCLOUD",) | |
| RETURN_NAMES = ("pointcloud",) | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "file": ("STRING", {"default": None}), | |
| } | |
| } | |
| def load_pointcloud(self, file): | |
| if file is None or file == "": | |
| return (None,) | |
| # Load the mesh using trimesh | |
| mesh = trimesh.load(file) | |
| # Extract vertices and colors | |
| vertices = mesh.vertices | |
| # Get vertex colors, defaulting to white if none exist | |
| if mesh.visual.vertex_colors is not None: | |
| colors = ( | |
| mesh.visual.vertex_colors[:, :3] / 255.0 | |
| ) # Convert 0-255 to 0-1 range | |
| else: | |
| colors = np.ones((len(vertices), 3)) | |
| # Interleave XYZ and RGB values | |
| point_cloud = [] | |
| for vertex, color in zip(vertices, colors): | |
| point_cloud.extend( | |
| [ | |
| float(vertex[0]), | |
| float(vertex[1]), | |
| float(vertex[2]), | |
| float(color[0]), | |
| float(color[1]), | |
| float(color[2]), | |
| ] | |
| ) | |
| return (point_cloud,) | |
| class SPAR3DPointCloudSaver: | |
| CATEGORY = SPAR3D_CATEGORY | |
| FUNCTION = "save_pointcloud" | |
| OUTPUT_NODE = True | |
| RETURN_TYPES = () | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "pointcloud": ("POINTCLOUD",), | |
| "filename_prefix": ("STRING", {"default": "SPAR3D"}), | |
| } | |
| } | |
| def save_pointcloud(self, pointcloud, filename_prefix): | |
| if pointcloud is None: | |
| return {"ui": {"text": "No point cloud data to save"}} | |
| # Reshape the flat list into points with XYZ and RGB | |
| points = np.array(pointcloud).reshape(-1, 6) | |
| # Create vertex array for PLY | |
| vertex_array = np.zeros( | |
| len(points), | |
| dtype=[ | |
| ("x", "f4"), | |
| ("y", "f4"), | |
| ("z", "f4"), | |
| ("red", "u1"), | |
| ("green", "u1"), | |
| ("blue", "u1"), | |
| ], | |
| ) | |
| # Fill vertex array | |
| vertex_array["x"] = points[:, 0] | |
| vertex_array["y"] = points[:, 1] | |
| vertex_array["z"] = points[:, 2] | |
| # Convert RGB from 0-1 to 0-255 range | |
| vertex_array["red"] = (points[:, 3] * 255).astype(np.uint8) | |
| vertex_array["green"] = (points[:, 4] * 255).astype(np.uint8) | |
| vertex_array["blue"] = (points[:, 5] * 255).astype(np.uint8) | |
| # Create PLY object | |
| ply_data = trimesh.PointCloud( | |
| vertices=points[:, :3], colors=points[:, 3:] * 255 | |
| ) | |
| # Save to file | |
| output_dir = folder_paths.get_output_directory() | |
| full_output_folder, filename, counter, subfolder, filename_prefix = ( | |
| folder_paths.get_save_image_path(filename_prefix, output_dir) | |
| ) | |
| out_path = os.path.join(full_output_folder, f"{filename}_{counter:05}.ply") | |
| ply_data.export(out_path) | |
| return {"ui": {"text": f"Saved point cloud to {out_path}"}} | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "SPAR3DLoader": "SPAR3D Loader", | |
| "SPAR3DPreview": "SPAR3D Preview", | |
| "SPAR3DSampler": "SPAR3D Sampler", | |
| "SPAR3DSave": "SPAR3D Save", | |
| "SPAR3DPointCloudLoader": "SPAR3D Point Cloud Loader", | |
| "SPAR3DPointCloudSaver": "SPAR3D Point Cloud Saver", | |
| } | |
| NODE_CLASS_MAPPINGS = { | |
| "SPAR3DLoader": SPAR3DLoader, | |
| "SPAR3DPreview": SPAR3DPreview, | |
| "SPAR3DSampler": SPAR3DSampler, | |
| "SPAR3DSave": SPAR3DSave, | |
| "SPAR3DPointCloudLoader": SPAR3DPointCloudLoader, | |
| "SPAR3DPointCloudSaver": SPAR3DPointCloudSaver, | |
| } | |
| WEB_DIRECTORY = "./comfyui" | |
| __all__ = ["NODE_CLASS_MAPPINGS", "NODE_DISPLAY_NAME_MAPPINGS", "WEB_DIRECTORY"] | |