Spaces:
Sleeping
Sleeping
| _base_ = [ | |
| '../../_base_/default_runtime.py', | |
| '../../_base_/recog_pipelines/crnn_pipeline.py', | |
| '../../_base_/recog_datasets/toy_data.py', | |
| '../../_base_/schedules/schedule_adadelta_5e.py' | |
| ] | |
| label_convertor = dict( | |
| type='CTCConvertor', dict_type='DICT36', with_unknown=True, lower=True) | |
| model = dict( | |
| type='CRNNNet', | |
| preprocessor=None, | |
| backbone=dict(type='VeryDeepVgg', leaky_relu=False, input_channels=1), | |
| encoder=None, | |
| decoder=dict(type='CRNNDecoder', in_channels=512, rnn_flag=True), | |
| loss=dict(type='CTCLoss'), | |
| label_convertor=label_convertor, | |
| pretrained=None) | |
| train_list = {{_base_.train_list}} | |
| test_list = {{_base_.test_list}} | |
| train_pipeline = {{_base_.train_pipeline}} | |
| test_pipeline = {{_base_.test_pipeline}} | |
| data = dict( | |
| samples_per_gpu=32, | |
| workers_per_gpu=2, | |
| val_dataloader=dict(samples_per_gpu=1), | |
| test_dataloader=dict(samples_per_gpu=1), | |
| train=dict( | |
| type='UniformConcatDataset', | |
| datasets=train_list, | |
| pipeline=train_pipeline), | |
| val=dict( | |
| type='UniformConcatDataset', | |
| datasets=test_list, | |
| pipeline=test_pipeline), | |
| test=dict( | |
| type='UniformConcatDataset', | |
| datasets=test_list, | |
| pipeline=test_pipeline)) | |
| evaluation = dict(interval=1, metric='acc') | |
| cudnn_benchmark = True | |