Spaces:
Running
Running
Create utils.py
Browse files- models/utils.py +278 -0
models/utils.py
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import torch
|
| 4 |
+
import math
|
| 5 |
+
|
| 6 |
+
from torch import nn
|
| 7 |
+
from typing import List
|
| 8 |
+
from transformers import BertTokenizer
|
| 9 |
+
from urllib.parse import urlparse
|
| 10 |
+
from timm.models.hub import download_cached_file
|
| 11 |
+
from models.vit import interpolate_pos_embed
|
| 12 |
+
from models.swin_transformer import interpolate_relative_pos_embed
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
CONFIG_PATH=(Path(__file__).resolve().parents[1])
|
| 15 |
+
|
| 16 |
+
def read_json(rpath):
|
| 17 |
+
with open(rpath, 'r') as f:
|
| 18 |
+
return json.load(f)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module,
|
| 22 |
+
base_model_prefix: str, skip_key: str):
|
| 23 |
+
uninitialized_encoder_weights: List[str] = []
|
| 24 |
+
if decoder.__class__ != encoder.__class__:
|
| 25 |
+
logger.info(
|
| 26 |
+
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
def tie_encoder_to_decoder_recursively(
|
| 30 |
+
decoder_pointer: nn.Module,
|
| 31 |
+
encoder_pointer: nn.Module,
|
| 32 |
+
module_name: str,
|
| 33 |
+
uninitialized_encoder_weights: List[str],
|
| 34 |
+
skip_key: str,
|
| 35 |
+
depth=0,
|
| 36 |
+
):
|
| 37 |
+
assert isinstance(decoder_pointer, nn.Module) and isinstance(
|
| 38 |
+
encoder_pointer, nn.Module
|
| 39 |
+
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
|
| 40 |
+
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
|
| 41 |
+
assert hasattr(encoder_pointer, "weight")
|
| 42 |
+
encoder_pointer.weight = decoder_pointer.weight
|
| 43 |
+
if hasattr(decoder_pointer, "bias"):
|
| 44 |
+
assert hasattr(encoder_pointer, "bias")
|
| 45 |
+
encoder_pointer.bias = decoder_pointer.bias
|
| 46 |
+
print(module_name + ' is tied')
|
| 47 |
+
return
|
| 48 |
+
|
| 49 |
+
encoder_modules = encoder_pointer._modules
|
| 50 |
+
decoder_modules = decoder_pointer._modules
|
| 51 |
+
if len(decoder_modules) > 0:
|
| 52 |
+
assert (
|
| 53 |
+
len(encoder_modules) > 0
|
| 54 |
+
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
|
| 55 |
+
|
| 56 |
+
all_encoder_weights = set([
|
| 57 |
+
module_name + "/" + sub_name
|
| 58 |
+
for sub_name in encoder_modules.keys()
|
| 59 |
+
])
|
| 60 |
+
encoder_layer_pos = 0
|
| 61 |
+
for name, module in decoder_modules.items():
|
| 62 |
+
if name.isdigit():
|
| 63 |
+
encoder_name = str(int(name) + encoder_layer_pos)
|
| 64 |
+
decoder_name = name
|
| 65 |
+
if not isinstance(
|
| 66 |
+
decoder_modules[decoder_name],
|
| 67 |
+
type(encoder_modules[encoder_name])) and len(
|
| 68 |
+
encoder_modules) != len(decoder_modules):
|
| 69 |
+
# this can happen if the name corresponds to the position in a list module list of layers
|
| 70 |
+
# in this case the decoder has added a cross-attention that the encoder does not have
|
| 71 |
+
# thus skip this step and subtract one layer pos from encoder
|
| 72 |
+
encoder_layer_pos -= 1
|
| 73 |
+
continue
|
| 74 |
+
elif name not in encoder_modules:
|
| 75 |
+
continue
|
| 76 |
+
elif depth > 500:
|
| 77 |
+
raise ValueError(
|
| 78 |
+
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
|
| 79 |
+
)
|
| 80 |
+
else:
|
| 81 |
+
decoder_name = encoder_name = name
|
| 82 |
+
tie_encoder_to_decoder_recursively(
|
| 83 |
+
decoder_modules[decoder_name],
|
| 84 |
+
encoder_modules[encoder_name],
|
| 85 |
+
module_name + "/" + name,
|
| 86 |
+
uninitialized_encoder_weights,
|
| 87 |
+
skip_key,
|
| 88 |
+
depth=depth + 1,
|
| 89 |
+
)
|
| 90 |
+
all_encoder_weights.remove(module_name + "/" + encoder_name)
|
| 91 |
+
|
| 92 |
+
uninitialized_encoder_weights += list(all_encoder_weights)
|
| 93 |
+
|
| 94 |
+
# tie weights recursively
|
| 95 |
+
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix,
|
| 96 |
+
uninitialized_encoder_weights, skip_key)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class GroupWiseLinear(nn.Module):
|
| 100 |
+
# could be changed to:
|
| 101 |
+
# output = torch.einsum('ijk,zjk->ij', x, self.W)
|
| 102 |
+
# or output = torch.einsum('ijk,jk->ij', x, self.W[0])
|
| 103 |
+
def __init__(self, num_class, hidden_dim, bias=True):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.num_class = num_class
|
| 106 |
+
self.hidden_dim = hidden_dim
|
| 107 |
+
self.bias = bias
|
| 108 |
+
|
| 109 |
+
self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim))
|
| 110 |
+
if bias:
|
| 111 |
+
self.b = nn.Parameter(torch.Tensor(1, num_class))
|
| 112 |
+
self.reset_parameters()
|
| 113 |
+
|
| 114 |
+
def reset_parameters(self):
|
| 115 |
+
stdv = 1. / math.sqrt(self.W.size(2))
|
| 116 |
+
for i in range(self.num_class):
|
| 117 |
+
self.W[0][i].data.uniform_(-stdv, stdv)
|
| 118 |
+
if self.bias:
|
| 119 |
+
for i in range(self.num_class):
|
| 120 |
+
self.b[0][i].data.uniform_(-stdv, stdv)
|
| 121 |
+
|
| 122 |
+
def forward(self, x):
|
| 123 |
+
# x: B,K,d
|
| 124 |
+
x = (self.W * x).sum(-1)
|
| 125 |
+
if self.bias:
|
| 126 |
+
x = x + self.b
|
| 127 |
+
return x
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def init_tokenizer():
|
| 131 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 132 |
+
tokenizer.add_special_tokens({'bos_token': '[DEC]'})
|
| 133 |
+
tokenizer.add_special_tokens({'additional_special_tokens': ['[ENC]']})
|
| 134 |
+
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
|
| 135 |
+
return tokenizer
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def create_vit(vit,
|
| 139 |
+
image_size,
|
| 140 |
+
use_grad_checkpointing=False,
|
| 141 |
+
ckpt_layer=0,
|
| 142 |
+
drop_path_rate=0):
|
| 143 |
+
|
| 144 |
+
assert vit in ['base', 'large'], "vit parameter must be base or large"
|
| 145 |
+
if vit == 'base':
|
| 146 |
+
vision_width = 768
|
| 147 |
+
visual_encoder = VisionTransformer(
|
| 148 |
+
img_size=image_size,
|
| 149 |
+
patch_size=16,
|
| 150 |
+
embed_dim=vision_width,
|
| 151 |
+
depth=12,
|
| 152 |
+
num_heads=12,
|
| 153 |
+
use_grad_checkpointing=use_grad_checkpointing,
|
| 154 |
+
ckpt_layer=ckpt_layer,
|
| 155 |
+
drop_path_rate=0 or drop_path_rate)
|
| 156 |
+
elif vit == 'large':
|
| 157 |
+
vision_width = 1024
|
| 158 |
+
visual_encoder = VisionTransformer(
|
| 159 |
+
img_size=image_size,
|
| 160 |
+
patch_size=16,
|
| 161 |
+
embed_dim=vision_width,
|
| 162 |
+
depth=24,
|
| 163 |
+
num_heads=16,
|
| 164 |
+
use_grad_checkpointing=use_grad_checkpointing,
|
| 165 |
+
ckpt_layer=ckpt_layer,
|
| 166 |
+
drop_path_rate=0.1 or drop_path_rate)
|
| 167 |
+
return visual_encoder, vision_width
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def is_url(url_or_filename):
|
| 171 |
+
parsed = urlparse(url_or_filename)
|
| 172 |
+
return parsed.scheme in ("http", "https")
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def load_checkpoint(model, url_or_filename):
|
| 176 |
+
if is_url(url_or_filename):
|
| 177 |
+
cached_file = download_cached_file(url_or_filename,
|
| 178 |
+
check_hash=False,
|
| 179 |
+
progress=True)
|
| 180 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
| 181 |
+
elif os.path.isfile(url_or_filename):
|
| 182 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
| 183 |
+
else:
|
| 184 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
| 185 |
+
|
| 186 |
+
state_dict = checkpoint['model']
|
| 187 |
+
|
| 188 |
+
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(
|
| 189 |
+
state_dict['visual_encoder.pos_embed'], model.visual_encoder)
|
| 190 |
+
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
|
| 191 |
+
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(
|
| 192 |
+
state_dict['visual_encoder_m.pos_embed'], model.visual_encoder_m)
|
| 193 |
+
for key in model.state_dict().keys():
|
| 194 |
+
if key in state_dict.keys():
|
| 195 |
+
if state_dict[key].shape != model.state_dict()[key].shape:
|
| 196 |
+
del state_dict[key]
|
| 197 |
+
|
| 198 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
| 199 |
+
print('load checkpoint from %s' % url_or_filename)
|
| 200 |
+
return model, msg
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def load_checkpoint_swinbase(model, url_or_filename, kwargs):
|
| 204 |
+
if kwargs['image_size'] == 224:
|
| 205 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
|
| 206 |
+
elif kwargs['image_size'] == 384:
|
| 207 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
|
| 208 |
+
window_size = read_json(vision_config_path)['window_size']
|
| 209 |
+
print('--------------')
|
| 210 |
+
print(url_or_filename)
|
| 211 |
+
print('--------------')
|
| 212 |
+
if is_url(url_or_filename):
|
| 213 |
+
cached_file = download_cached_file(url_or_filename,
|
| 214 |
+
check_hash=False,
|
| 215 |
+
progress=True)
|
| 216 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
| 217 |
+
elif os.path.isfile(url_or_filename):
|
| 218 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
| 219 |
+
else:
|
| 220 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
| 221 |
+
|
| 222 |
+
state_dict = checkpoint['model']
|
| 223 |
+
|
| 224 |
+
for k in list(state_dict.keys()):
|
| 225 |
+
if 'relative_position_bias_table' in k:
|
| 226 |
+
dst_num_pos = (2 * window_size - 1)**2
|
| 227 |
+
state_dict[k] = interpolate_relative_pos_embed(state_dict[k],
|
| 228 |
+
dst_num_pos,
|
| 229 |
+
param_name=k)
|
| 230 |
+
elif ('relative_position_index' in k) or ('attn_mask' in k):
|
| 231 |
+
del state_dict[k]
|
| 232 |
+
elif "vision_multi" in k:
|
| 233 |
+
state_dict[k.replace("vision_multi",
|
| 234 |
+
"tagging_head")] = state_dict.pop(k)
|
| 235 |
+
|
| 236 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
| 237 |
+
print('load checkpoint from %s' % url_or_filename)
|
| 238 |
+
return model, msg
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def load_checkpoint_swinlarge(model, url_or_filename, kwargs):
|
| 242 |
+
if kwargs['image_size'] == 224:
|
| 243 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_224.json'
|
| 244 |
+
elif kwargs['image_size'] == 384:
|
| 245 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_384.json'
|
| 246 |
+
window_size = read_json(vision_config_path)['window_size']
|
| 247 |
+
print('--------------')
|
| 248 |
+
print(url_or_filename)
|
| 249 |
+
print('--------------')
|
| 250 |
+
if is_url(url_or_filename):
|
| 251 |
+
cached_file = download_cached_file(url_or_filename,
|
| 252 |
+
check_hash=False,
|
| 253 |
+
progress=True)
|
| 254 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
| 255 |
+
elif os.path.isfile(url_or_filename):
|
| 256 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
| 257 |
+
else:
|
| 258 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
| 259 |
+
|
| 260 |
+
state_dict = checkpoint['model']
|
| 261 |
+
|
| 262 |
+
for k in list(state_dict.keys()):
|
| 263 |
+
if 'relative_position_bias_table' in k:
|
| 264 |
+
dst_num_pos = (2 * window_size - 1)**2
|
| 265 |
+
state_dict[k] = interpolate_relative_pos_embed(state_dict[k],
|
| 266 |
+
dst_num_pos,
|
| 267 |
+
param_name=k)
|
| 268 |
+
elif ('relative_position_index' in k) or ('attn_mask' in k):
|
| 269 |
+
del state_dict[k]
|
| 270 |
+
elif "vision_multi" in k:
|
| 271 |
+
state_dict[k.replace("vision_multi",
|
| 272 |
+
"tagging_head")] = state_dict.pop(k)
|
| 273 |
+
|
| 274 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
| 275 |
+
print('load checkpoint from %s' % url_or_filename)
|
| 276 |
+
return model, msg
|
| 277 |
+
|
| 278 |
+
|