Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,65 +1,73 @@
|
|
| 1 |
-
|
| 2 |
-
import
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
-
|
| 5 |
-
from torchvision.transforms.functional import InterpolationMode
|
| 6 |
|
| 7 |
-
|
|
|
|
| 8 |
|
|
|
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
# from models.blip import blip_decoder
|
| 16 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 17 |
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
-
image_size =
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
transforms.ToTensor(),
|
| 27 |
-
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
| 28 |
-
])
|
| 29 |
|
| 30 |
-
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth'
|
| 31 |
-
|
| 32 |
-
# model = blip_decoder(pretrained=model_url, image_size=384, vit='large')
|
| 33 |
model.eval()
|
| 34 |
model = model.to(device)
|
| 35 |
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
# image_size_vq = 480
|
| 40 |
-
# transform_vq = transforms.Compose([
|
| 41 |
-
# transforms.Resize((image_size_vq,image_size_vq),interpolation=InterpolationMode.BICUBIC),
|
| 42 |
-
# transforms.ToTensor(),
|
| 43 |
-
# transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
| 44 |
-
# ])
|
| 45 |
-
|
| 46 |
-
# model_url_vq = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth'
|
| 47 |
-
|
| 48 |
-
# model_vq = blip_vqa(pretrained=model_url_vq, image_size=480, vit='base')
|
| 49 |
-
# model_vq.eval()
|
| 50 |
-
# model_vq = model_vq.to(device)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def inference(raw_image, model_n, question, strategy):
|
| 55 |
if model_n == 'Image Captioning':
|
|
|
|
| 56 |
image = transform(raw_image).unsqueeze(0).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
with torch.no_grad():
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
else:
|
| 65 |
image_vq = transform_vq(raw_image).unsqueeze(0).to(device)
|
|
@@ -67,16 +75,26 @@ def inference(raw_image, model_n, question, strategy):
|
|
| 67 |
answer = model_vq(image_vq, question, train=False, inference='generate')
|
| 68 |
return 'answer: '+answer[0]
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
|
| 74 |
|
| 75 |
-
title = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
| 78 |
|
| 79 |
-
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>"
|
| 80 |
|
| 81 |
|
| 82 |
-
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['starrynight.jpeg',"Image Captioning","None","Nucleus sampling"]]).launch(enable_queue=True)
|
|
|
|
| 1 |
+
import ruamel_yaml as yaml
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
|
| 5 |
import torch
|
| 6 |
+
import torchvision.transforms as transforms
|
|
|
|
| 7 |
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from models.tag2text import tag2text_caption
|
| 10 |
|
| 11 |
+
import gradio as gr
|
| 12 |
|
| 13 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 14 |
|
| 15 |
+
image_size = 384
|
| 16 |
|
| 17 |
|
| 18 |
+
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 19 |
+
std=[0.229, 0.224, 0.225])
|
| 20 |
+
transform = transforms.Compose([transforms.Resize((image_size, image_size)),transforms.ToTensor(),normalize])
|
| 21 |
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
#######Swin Version
|
| 24 |
+
pretrained = '/home/notebook/code/personal/S9049611/BLIP/output/blip_tagtotext_14m/blip_tagtotext_encoderdiv_tar_random_swin/caption_coco_finetune_tagparse_tagfinetune_threshold075_bceloss_tagsingle_5e6_epoch19_negative_1_05_pos_1_10/checkpoint_05.pth'
|
| 25 |
|
| 26 |
+
config_file = 'configs/tag2text_caption.yaml'
|
| 27 |
+
config = yaml.load(open(config_file, 'r'), Loader=yaml.Loader)
|
| 28 |
|
| 29 |
|
| 30 |
+
model = tag2text_caption(pretrained=pretrained, image_size=image_size, vit=config['vit'],
|
| 31 |
+
vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'],
|
| 32 |
+
prompt=config['prompt'],config=config,threshold = 0.75 )
|
|
|
|
|
|
|
|
|
|
| 33 |
|
|
|
|
|
|
|
|
|
|
| 34 |
model.eval()
|
| 35 |
model = model.to(device)
|
| 36 |
|
| 37 |
|
| 38 |
+
def inference(raw_image, model_n, input_tag, strategy):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
if model_n == 'Image Captioning':
|
| 40 |
+
raw_image = raw_image.resize((image_size, image_size))
|
| 41 |
image = transform(raw_image).unsqueeze(0).to(device)
|
| 42 |
+
model.threshold = 0.7
|
| 43 |
+
if input_tag == '' or input_tag == 'none' or input_tag == 'None':
|
| 44 |
+
input_tag_list = None
|
| 45 |
+
else:
|
| 46 |
+
input_tag_list = []
|
| 47 |
+
input_tag_list.append(input_tag.replace(',',' | '))
|
| 48 |
with torch.no_grad():
|
| 49 |
+
if strategy == "Beam search":
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
caption, tag_predict = model.generate(image,tag_input = input_tag_list, return_tag_predict = True)
|
| 53 |
+
if input_tag_list == None:
|
| 54 |
+
tag_1 = tag_predict
|
| 55 |
+
tag_2 = ['none']
|
| 56 |
+
else:
|
| 57 |
+
_, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)
|
| 58 |
+
tag_2 = tag_predict
|
| 59 |
+
|
| 60 |
+
else:
|
| 61 |
+
|
| 62 |
+
caption,tag_predict = model.generate(image, tag_input = input_tag_list,sample=True, top_p=0.9, max_length=20, min_length=5, return_tag_predict = True)
|
| 63 |
+
if input_tag_list == None:
|
| 64 |
+
tag_1 = tag_predict
|
| 65 |
+
tag_2 = ['none']
|
| 66 |
+
else:
|
| 67 |
+
_, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)
|
| 68 |
+
tag_2 = tag_predict
|
| 69 |
+
return tag_1[0],tag_2[0],caption[0]
|
| 70 |
+
|
| 71 |
|
| 72 |
else:
|
| 73 |
image_vq = transform_vq(raw_image).unsqueeze(0).to(device)
|
|
|
|
| 75 |
answer = model_vq(image_vq, question, train=False, inference='generate')
|
| 76 |
return 'answer: '+answer[0]
|
| 77 |
|
| 78 |
+
inputs = [gr.inputs.Image(type='pil'),gr.inputs.Radio(choices=['Image Captioning'], type="value", default="Image Captioning", label="Task"),gr.inputs.Textbox(lines=2, label="User Identified Tags (Optional, Enter with commas)"),gr.inputs.Radio(choices=['Beam search','Nucleus sampling'], type="value", default="Beam search", label="Caption Decoding Strategy")]
|
| 79 |
+
|
| 80 |
+
outputs = [gr.outputs.Textbox(label="Model Identified Tags"),gr.outputs.Textbox(label="User Identified Tags"), gr.outputs.Textbox(label="Image Caption") ]
|
| 81 |
+
|
| 82 |
+
title = "Tag2Text"
|
| 83 |
+
|
| 84 |
+
description = "Gradio demo for Tag2Text: Guiding Language-Image Model via Image Tagging (Fudan University, OPPO Research Institute, International Digital Economy Academy)."
|
| 85 |
|
| 86 |
+
article = "<p style='text-align: center'><a href='' target='_blank'>Tag2Text: Guiding Language-Image Model via Image Tagging</a> | <a href='' target='_blank'>Github Repo</a></p>"
|
| 87 |
|
| 88 |
+
demo = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['images/COCO_val2014_000000551338.jpg',"Image Captioning","none","Beam search"],
|
| 89 |
+
['images/COCO_val2014_000000551338.jpg',"Image Captioning","fence, sky","Beam search"],
|
| 90 |
+
# ['images/COCO_val2014_000000551338.jpg',"Image Captioning","grass","Beam search"],
|
| 91 |
+
['images/COCO_val2014_000000483108.jpg',"Image Captioning","none","Beam search"],
|
| 92 |
+
['images/COCO_val2014_000000483108.jpg',"Image Captioning","electric cable","Beam search"],
|
| 93 |
+
# ['images/COCO_val2014_000000483108.jpg',"Image Captioning","sky, train","Beam search"],
|
| 94 |
+
['images/COCO_val2014_000000483108.jpg',"Image Captioning","track, train","Beam search"] ,
|
| 95 |
+
['images/COCO_val2014_000000483108.jpg',"Image Captioning","grass","Beam search"]
|
| 96 |
+
])
|
| 97 |
|
|
|
|
| 98 |
|
|
|
|
| 99 |
|
| 100 |
|
|
|