Spaces:
Runtime error
Runtime error
Commit
·
51c9688
1
Parent(s):
ec83bbc
initial commit
Browse files- .gitattributes +4 -0
- app.py +332 -0
- basket.mp4 +3 -0
- football.mp4 +3 -0
- hurdles.mp4 +3 -0
- render.py +125 -0
- requirements.txt +6 -0
- tennis.mp4 +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
basket.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
football.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
hurdles.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
tennis.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
import spaces
|
| 6 |
+
import supervision as sv
|
| 7 |
+
import torch
|
| 8 |
+
from render import draw_links, draw_points, keypoint_colors, link_colors
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
|
| 11 |
+
from transformers import (
|
| 12 |
+
AutoProcessor,
|
| 13 |
+
RTDetrForObjectDetection,
|
| 14 |
+
VitPoseForPoseEstimation,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
css = """
|
| 18 |
+
.feedback textarea {font-size: 24px !important}
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
device = "cuda"
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def calculate_end_frame_index(source_video_path):
|
| 25 |
+
video_info = sv.VideoInfo.from_video_path(source_video_path)
|
| 26 |
+
return video_info.total_frames
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@spaces.GPU
|
| 30 |
+
def process_image(
|
| 31 |
+
input_image,
|
| 32 |
+
model_variant,
|
| 33 |
+
progress=gr.Progress(track_tqdm=True),
|
| 34 |
+
):
|
| 35 |
+
# You can choose detector by your choice
|
| 36 |
+
person_image_processor = AutoProcessor.from_pretrained(
|
| 37 |
+
"PekingU/rtdetr_r50vd_coco_o365"
|
| 38 |
+
)
|
| 39 |
+
person_model = RTDetrForObjectDetection.from_pretrained(
|
| 40 |
+
"PekingU/rtdetr_r50vd_coco_o365", device_map=device
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
if model_variant == "Base":
|
| 44 |
+
model_name = "yonigozlan/synthpose-vitpose-base-hf"
|
| 45 |
+
else:
|
| 46 |
+
model_name = "yonigozlan/synthpose-vitpose-huge-hf"
|
| 47 |
+
|
| 48 |
+
image_processor = AutoProcessor.from_pretrained(model_name)
|
| 49 |
+
model = VitPoseForPoseEstimation.from_pretrained(model_name, device_map=device)
|
| 50 |
+
|
| 51 |
+
keypoint_edges = model.config.edges
|
| 52 |
+
|
| 53 |
+
frame = np.array(input_image)
|
| 54 |
+
inputs = person_image_processor(images=frame, return_tensors="pt").to(device)
|
| 55 |
+
|
| 56 |
+
with torch.no_grad():
|
| 57 |
+
outputs = person_model(**inputs)
|
| 58 |
+
|
| 59 |
+
results = person_image_processor.post_process_object_detection(
|
| 60 |
+
outputs,
|
| 61 |
+
target_sizes=torch.tensor([(frame.shape[0], frame.shape[1])]),
|
| 62 |
+
threshold=0.4,
|
| 63 |
+
)
|
| 64 |
+
result = results[0] # take first image results
|
| 65 |
+
|
| 66 |
+
# Human label refers 0 index in COCO dataset
|
| 67 |
+
person_boxes = result["boxes"][result["labels"] == 0]
|
| 68 |
+
person_boxes = person_boxes.cpu().numpy()
|
| 69 |
+
|
| 70 |
+
# Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
|
| 71 |
+
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
|
| 72 |
+
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]
|
| 73 |
+
|
| 74 |
+
# ------------------------------------------------------------------------
|
| 75 |
+
# Stage 2. Detect keypoints for each person found
|
| 76 |
+
# ------------------------------------------------------------------------
|
| 77 |
+
|
| 78 |
+
inputs = image_processor(frame, boxes=[person_boxes], return_tensors="pt").to(
|
| 79 |
+
device
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
outputs = model(**inputs)
|
| 84 |
+
|
| 85 |
+
pose_results = image_processor.post_process_pose_estimation(
|
| 86 |
+
outputs, boxes=[person_boxes]
|
| 87 |
+
)
|
| 88 |
+
image_pose_result = pose_results[0] # results for first image
|
| 89 |
+
|
| 90 |
+
for pose_result in image_pose_result:
|
| 91 |
+
scores = np.array(pose_result["scores"])
|
| 92 |
+
keypoints = np.array(pose_result["keypoints"])
|
| 93 |
+
|
| 94 |
+
# draw each point on image
|
| 95 |
+
draw_points(
|
| 96 |
+
frame,
|
| 97 |
+
keypoints,
|
| 98 |
+
scores,
|
| 99 |
+
keypoint_colors,
|
| 100 |
+
keypoint_score_threshold=0.3,
|
| 101 |
+
radius=max(2, int(max(frame.shape[0], frame.shape[1]) / 500)),
|
| 102 |
+
show_keypoint_weight=False,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# draw links
|
| 106 |
+
draw_links(
|
| 107 |
+
frame,
|
| 108 |
+
keypoints,
|
| 109 |
+
scores,
|
| 110 |
+
keypoint_edges,
|
| 111 |
+
link_colors,
|
| 112 |
+
keypoint_score_threshold=0.3,
|
| 113 |
+
thickness=max(2, int(max(frame.shape[0], frame.shape[1]) / 1000)),
|
| 114 |
+
show_keypoint_weight=False,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
return frame
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
@spaces.GPU
|
| 121 |
+
def process_video(
|
| 122 |
+
input_video,
|
| 123 |
+
model_variant,
|
| 124 |
+
progress=gr.Progress(track_tqdm=True),
|
| 125 |
+
):
|
| 126 |
+
video_info = sv.VideoInfo.from_video_path(input_video)
|
| 127 |
+
total = calculate_end_frame_index(input_video)
|
| 128 |
+
frame_generator = sv.get_video_frames_generator(source_path=input_video, end=total)
|
| 129 |
+
|
| 130 |
+
result_file_name = "output.mp4"
|
| 131 |
+
result_file_path = os.path.join(os.getcwd(), result_file_name)
|
| 132 |
+
# You can choose detector by your choice
|
| 133 |
+
person_image_processor = AutoProcessor.from_pretrained(
|
| 134 |
+
"PekingU/rtdetr_r50vd_coco_o365"
|
| 135 |
+
)
|
| 136 |
+
person_model = RTDetrForObjectDetection.from_pretrained(
|
| 137 |
+
"PekingU/rtdetr_r50vd_coco_o365", device_map=device
|
| 138 |
+
)
|
| 139 |
+
if model_variant == "Base":
|
| 140 |
+
model_name = "yonigozlan/synthpose-vitpose-base-hf"
|
| 141 |
+
else:
|
| 142 |
+
model_name = "yonigozlan/synthpose-vitpose-huge-hf"
|
| 143 |
+
|
| 144 |
+
image_processor = AutoProcessor.from_pretrained(model_name)
|
| 145 |
+
model = VitPoseForPoseEstimation.from_pretrained(model_name, device_map=device)
|
| 146 |
+
|
| 147 |
+
keypoint_edges = model.config.edges
|
| 148 |
+
|
| 149 |
+
with sv.VideoSink(result_file_path, video_info=video_info) as sink:
|
| 150 |
+
for _ in tqdm(range(total), desc="Processing video.."):
|
| 151 |
+
try:
|
| 152 |
+
frame = next(frame_generator)
|
| 153 |
+
except StopIteration:
|
| 154 |
+
break
|
| 155 |
+
# ------------------------------------------------------------------------
|
| 156 |
+
# Stage 1. Detect humans on the image
|
| 157 |
+
# ------------------------------------------------------------------------
|
| 158 |
+
|
| 159 |
+
inputs = person_image_processor(images=frame, return_tensors="pt").to(
|
| 160 |
+
device
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
with torch.no_grad():
|
| 164 |
+
outputs = person_model(**inputs)
|
| 165 |
+
|
| 166 |
+
results = person_image_processor.post_process_object_detection(
|
| 167 |
+
outputs,
|
| 168 |
+
target_sizes=torch.tensor([(frame.shape[0], frame.shape[1])]),
|
| 169 |
+
threshold=0.4,
|
| 170 |
+
)
|
| 171 |
+
result = results[0] # take first image results
|
| 172 |
+
|
| 173 |
+
# Human label refers 0 index in COCO dataset
|
| 174 |
+
person_boxes = result["boxes"][result["labels"] == 0]
|
| 175 |
+
person_boxes = person_boxes.cpu().numpy()
|
| 176 |
+
|
| 177 |
+
# Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
|
| 178 |
+
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
|
| 179 |
+
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]
|
| 180 |
+
|
| 181 |
+
# ------------------------------------------------------------------------
|
| 182 |
+
# Stage 2. Detect keypoints for each person found
|
| 183 |
+
# ------------------------------------------------------------------------
|
| 184 |
+
|
| 185 |
+
inputs = image_processor(
|
| 186 |
+
frame, boxes=[person_boxes], return_tensors="pt"
|
| 187 |
+
).to(device)
|
| 188 |
+
|
| 189 |
+
with torch.no_grad():
|
| 190 |
+
outputs = model(**inputs)
|
| 191 |
+
|
| 192 |
+
pose_results = image_processor.post_process_pose_estimation(
|
| 193 |
+
outputs, boxes=[person_boxes]
|
| 194 |
+
)
|
| 195 |
+
image_pose_result = pose_results[0] # results for first image
|
| 196 |
+
|
| 197 |
+
for pose_result in image_pose_result:
|
| 198 |
+
scores = np.array(pose_result["scores"])
|
| 199 |
+
keypoints = np.array(pose_result["keypoints"])
|
| 200 |
+
|
| 201 |
+
# draw each point on image
|
| 202 |
+
draw_points(
|
| 203 |
+
frame,
|
| 204 |
+
keypoints,
|
| 205 |
+
scores,
|
| 206 |
+
keypoint_colors,
|
| 207 |
+
keypoint_score_threshold=0.3,
|
| 208 |
+
radius=max(2, int(frame.shape[0] / 500)),
|
| 209 |
+
show_keypoint_weight=False,
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# draw links
|
| 213 |
+
draw_links(
|
| 214 |
+
frame,
|
| 215 |
+
keypoints,
|
| 216 |
+
scores,
|
| 217 |
+
keypoint_edges,
|
| 218 |
+
link_colors,
|
| 219 |
+
keypoint_score_threshold=0.3,
|
| 220 |
+
thickness=max(1, int(frame.shape[0] / 1000)),
|
| 221 |
+
show_keypoint_weight=False,
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
sink.write_frame(frame)
|
| 225 |
+
|
| 226 |
+
return result_file_path
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
| 230 |
+
gr.Markdown("## Markerless Motion Capture with SynthPose")
|
| 231 |
+
gr.Markdown(
|
| 232 |
+
"""
|
| 233 |
+
SynthPose is a new approach that enables finetuning of pre-trained 2D human pose models to predict an arbitrarily denser set of keypoints for accurate kinematic analysis through the use of synthetic data.
|
| 234 |
+
More details are available in [OpenCapBench: A Benchmark to Bridge Pose Estimation and Biomechanics](https://arxiv.org/abs/2406.09788).
|
| 235 |
+
This particular variant was finetuned on a set of keypoints usually found on motion capture setups, and include coco keypoints as well.<br />
|
| 236 |
+
The keypoints part of the skeleton are the COCO keypoints, and the pink ones the anatomical markers.
|
| 237 |
+
"""
|
| 238 |
+
)
|
| 239 |
+
gr.Markdown(
|
| 240 |
+
"Simply upload a video, and press run to start the inference! You can also try the examples below. 👇"
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
with gr.Row():
|
| 244 |
+
with gr.Column():
|
| 245 |
+
input_choice = gr.Radio(
|
| 246 |
+
["Video", "Image"], label="Input Type", value="Video", interactive=True
|
| 247 |
+
)
|
| 248 |
+
model_variant = gr.Radio(
|
| 249 |
+
["Base", "Huge"], label="Model Variant", value="Base", interactive=True
|
| 250 |
+
)
|
| 251 |
+
input_video = gr.Video(label="Input Video")
|
| 252 |
+
input_image = gr.Image(label="Input Image", visible=False)
|
| 253 |
+
with gr.Column():
|
| 254 |
+
output_video = gr.Video(label="Output Video")
|
| 255 |
+
output_image = gr.Image(label="Output Image", visible=False)
|
| 256 |
+
|
| 257 |
+
with gr.Row():
|
| 258 |
+
submit_video = gr.Button(variant="primary")
|
| 259 |
+
submit_image = gr.Button(variant="primary", visible=False)
|
| 260 |
+
|
| 261 |
+
def switch_input_type(input_choice):
|
| 262 |
+
input_type = input_choice
|
| 263 |
+
if input_type == "Video":
|
| 264 |
+
return [
|
| 265 |
+
gr.update(visible=True),
|
| 266 |
+
gr.update(visible=False),
|
| 267 |
+
gr.update(visible=True),
|
| 268 |
+
gr.update(visible=False),
|
| 269 |
+
gr.update(visible=True),
|
| 270 |
+
gr.update(visible=False),
|
| 271 |
+
]
|
| 272 |
+
|
| 273 |
+
# input_video.visible = True
|
| 274 |
+
# input_image.visible = False
|
| 275 |
+
# output_video.visible = True
|
| 276 |
+
# output_image.visible = False
|
| 277 |
+
# submit_video.visible = True
|
| 278 |
+
# submit_image.visible = False
|
| 279 |
+
else:
|
| 280 |
+
return [
|
| 281 |
+
gr.update(visible=False),
|
| 282 |
+
gr.update(visible=True),
|
| 283 |
+
gr.update(visible=False),
|
| 284 |
+
gr.update(visible=True),
|
| 285 |
+
gr.update(visible=False),
|
| 286 |
+
gr.update(visible=True),
|
| 287 |
+
]
|
| 288 |
+
|
| 289 |
+
# input_video.visible = False
|
| 290 |
+
# input_image.visible = True
|
| 291 |
+
# output_video.visible = False
|
| 292 |
+
# output_image.visible = True
|
| 293 |
+
# submit_video.visible = False
|
| 294 |
+
# submit_image.visible = True
|
| 295 |
+
|
| 296 |
+
input_choice.change(
|
| 297 |
+
switch_input_type,
|
| 298 |
+
inputs=input_choice,
|
| 299 |
+
outputs=[
|
| 300 |
+
input_video,
|
| 301 |
+
input_image,
|
| 302 |
+
output_video,
|
| 303 |
+
output_image,
|
| 304 |
+
submit_video,
|
| 305 |
+
submit_image,
|
| 306 |
+
],
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
example = gr.Examples(
|
| 310 |
+
examples=[
|
| 311 |
+
["./tennis.mp4"],
|
| 312 |
+
["./football.mp4"],
|
| 313 |
+
["./basket.mp4"],
|
| 314 |
+
["./hurdles.mp4"],
|
| 315 |
+
],
|
| 316 |
+
inputs=[input_video],
|
| 317 |
+
outputs=output_video,
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
submit_video.click(
|
| 321 |
+
fn=process_video,
|
| 322 |
+
inputs=[input_video, model_variant],
|
| 323 |
+
outputs=[output_video],
|
| 324 |
+
)
|
| 325 |
+
submit_image.click(
|
| 326 |
+
fn=process_image,
|
| 327 |
+
inputs=[input_image, model_variant],
|
| 328 |
+
outputs=[output_image],
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
if __name__ == "__main__":
|
| 332 |
+
demo.launch(show_error=True)
|
basket.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:52ade15f3ec0cb1838627090d646c2c12a21dedbe70d4bd60d9ca3fa6ff45e37
|
| 3 |
+
size 9347210
|
football.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:56a85c5c7d5d6e0825f76a71e5e3ee2ce35c8ffbe841ef4bfa544af1089259aa
|
| 3 |
+
size 2855852
|
hurdles.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6ee5aa420ea2629dcefd9bb3a26221f30b4639f6de001c372d6c2f84e79b0b66
|
| 3 |
+
size 6714353
|
render.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### Visualization for advanced user
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def draw_points(
|
| 9 |
+
image,
|
| 10 |
+
keypoints,
|
| 11 |
+
scores,
|
| 12 |
+
pose_keypoint_color,
|
| 13 |
+
keypoint_score_threshold,
|
| 14 |
+
radius,
|
| 15 |
+
show_keypoint_weight,
|
| 16 |
+
):
|
| 17 |
+
if pose_keypoint_color is not None:
|
| 18 |
+
assert len(pose_keypoint_color) == len(keypoints)
|
| 19 |
+
for kid, (kpt, kpt_score) in enumerate(zip(keypoints, scores)):
|
| 20 |
+
x_coord, y_coord = int(kpt[0]), int(kpt[1])
|
| 21 |
+
if kpt_score > keypoint_score_threshold:
|
| 22 |
+
color = tuple(int(c) for c in pose_keypoint_color[kid])
|
| 23 |
+
if show_keypoint_weight:
|
| 24 |
+
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
|
| 25 |
+
transparency = max(0, min(1, kpt_score))
|
| 26 |
+
cv2.addWeighted(
|
| 27 |
+
image, transparency, image, 1 - transparency, 0, dst=image
|
| 28 |
+
)
|
| 29 |
+
else:
|
| 30 |
+
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def draw_links(
|
| 34 |
+
image,
|
| 35 |
+
keypoints,
|
| 36 |
+
scores,
|
| 37 |
+
keypoint_edges,
|
| 38 |
+
link_colors,
|
| 39 |
+
keypoint_score_threshold,
|
| 40 |
+
thickness,
|
| 41 |
+
show_keypoint_weight,
|
| 42 |
+
stick_width=2,
|
| 43 |
+
):
|
| 44 |
+
height, width, _ = image.shape
|
| 45 |
+
if keypoint_edges is not None and link_colors is not None:
|
| 46 |
+
assert len(link_colors) == len(keypoint_edges)
|
| 47 |
+
for sk_id, sk in enumerate(keypoint_edges):
|
| 48 |
+
x1, y1, score1 = (
|
| 49 |
+
int(keypoints[sk[0], 0]),
|
| 50 |
+
int(keypoints[sk[0], 1]),
|
| 51 |
+
scores[sk[0]],
|
| 52 |
+
)
|
| 53 |
+
x2, y2, score2 = (
|
| 54 |
+
int(keypoints[sk[1], 0]),
|
| 55 |
+
int(keypoints[sk[1], 1]),
|
| 56 |
+
scores[sk[1]],
|
| 57 |
+
)
|
| 58 |
+
if (
|
| 59 |
+
x1 > 0
|
| 60 |
+
and x1 < width
|
| 61 |
+
and y1 > 0
|
| 62 |
+
and y1 < height
|
| 63 |
+
and x2 > 0
|
| 64 |
+
and x2 < width
|
| 65 |
+
and y2 > 0
|
| 66 |
+
and y2 < height
|
| 67 |
+
and score1 > keypoint_score_threshold
|
| 68 |
+
and score2 > keypoint_score_threshold
|
| 69 |
+
):
|
| 70 |
+
color = tuple(int(c) for c in link_colors[sk_id])
|
| 71 |
+
if show_keypoint_weight:
|
| 72 |
+
X = (x1, x2)
|
| 73 |
+
Y = (y1, y2)
|
| 74 |
+
mean_x = np.mean(X)
|
| 75 |
+
mean_y = np.mean(Y)
|
| 76 |
+
length = ((Y[0] - Y[1]) ** 2 + (X[0] - X[1]) ** 2) ** 0.5
|
| 77 |
+
angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
|
| 78 |
+
polygon = cv2.ellipse2Poly(
|
| 79 |
+
(int(mean_x), int(mean_y)),
|
| 80 |
+
(int(length / 2), int(stick_width)),
|
| 81 |
+
int(angle),
|
| 82 |
+
0,
|
| 83 |
+
360,
|
| 84 |
+
1,
|
| 85 |
+
)
|
| 86 |
+
cv2.fillConvexPoly(image, polygon, color)
|
| 87 |
+
transparency = max(
|
| 88 |
+
0, min(1, 0.5 * (keypoints[sk[0], 2] + keypoints[sk[1], 2]))
|
| 89 |
+
)
|
| 90 |
+
cv2.addWeighted(
|
| 91 |
+
image, transparency, image, 1 - transparency, 0, dst=image
|
| 92 |
+
)
|
| 93 |
+
else:
|
| 94 |
+
cv2.line(image, (x1, y1), (x2, y2), color, thickness=thickness)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
palette = np.array(
|
| 98 |
+
[
|
| 99 |
+
[255, 128, 0],
|
| 100 |
+
[255, 153, 51],
|
| 101 |
+
[255, 178, 102],
|
| 102 |
+
[230, 230, 0],
|
| 103 |
+
[255, 153, 255],
|
| 104 |
+
[153, 204, 255],
|
| 105 |
+
[255, 102, 255],
|
| 106 |
+
[255, 51, 255],
|
| 107 |
+
[102, 178, 255],
|
| 108 |
+
[51, 153, 255],
|
| 109 |
+
[255, 153, 153],
|
| 110 |
+
[255, 102, 102],
|
| 111 |
+
[255, 51, 51],
|
| 112 |
+
[153, 255, 153],
|
| 113 |
+
[102, 255, 102],
|
| 114 |
+
[51, 255, 51],
|
| 115 |
+
[0, 255, 0],
|
| 116 |
+
[0, 0, 255],
|
| 117 |
+
[255, 0, 0],
|
| 118 |
+
[255, 255, 255],
|
| 119 |
+
]
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
link_colors = palette[[0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16]]
|
| 123 |
+
keypoint_colors = palette[
|
| 124 |
+
[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0] + [4] * (52 - 17)
|
| 125 |
+
]
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
timm
|
| 3 |
+
numpy==1.26.3
|
| 4 |
+
git+https://github.com/huggingface/transformers.git@main
|
| 5 |
+
supervision
|
| 6 |
+
spaces
|
tennis.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cc0868023eb6fa2d68338406964396b2cb1123610fdc6af05ba37c539ee9e92a
|
| 3 |
+
size 6586057
|