Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import spaces | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| def load_model(): | |
| model_id = "stefan-it/nanochat-german-v1" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=False) | |
| model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=False, dtype=torch.bfloat16).to(device) | |
| model.eval() | |
| return tokenizer, model | |
| tokenizer, model = load_model() | |
| def generate(prompt, history, max_new_tokens, temperature, top_p, repetition_penalty, no_repeat_ngram_size): | |
| if len(history) > 0: | |
| messages = history + [ | |
| {"role": "user", "content": prompt}, | |
| ] | |
| else: | |
| messages = [ | |
| {"role": "user", "content": prompt}, | |
| ] | |
| print(history) | |
| inputs = tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_tensors="pt", | |
| return_dict=True, | |
| ).to(device) | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| no_repeat_ngram_size=no_repeat_ngram_size, | |
| ) | |
| generated_tokens = outputs[0, inputs.input_ids.shape[1]:] | |
| output = tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
| return output | |
| demo = gr.ChatInterface(fn=generate, | |
| type="messages", | |
| title="German nanochat v1", | |
| additional_inputs=[ | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.8, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p"), | |
| gr.Slider(minimum=1.0, maximum=2.0, value=1.2, step=0.1, label="Repetition penalty"), | |
| gr.Slider(minimum=0, maximum=5, value=3, step=1, label="No repeat of ngrams"), | |
| ]) | |
| demo.launch() | |
 
			
