Spaces:
Running
Running
copy from dev
Browse files- .gitattributes +30 -0
- Dockerfile +55 -0
- README.md +2 -2
- demo_examples/01.png +3 -0
- demo_examples/03.png +3 -0
- demo_examples/04.png +3 -0
- demo_examples/05.png +3 -0
- demo_examples/07.png +3 -0
- demo_examples/09.png +3 -0
- demo_examples/12.png +3 -0
- demo_examples/14.png +3 -0
- demo_examples/17.jpg +3 -0
- demo_examples/18.jpg +3 -0
- demo_examples/19.jpg +3 -0
- demo_examples/21.png +3 -0
- demo_examples/22.png +3 -0
- demo_examples/23.png +3 -0
- demo_examples/24.png +3 -0
- demo_examples/25.png +3 -0
- demo_examples/26.png +3 -0
- demo_examples/27.png +3 -0
- demo_examples/28.png +3 -0
- demo_examples/29.png +3 -0
- demo_examples/30.png +3 -0
- demo_examples/31.png +3 -0
- demo_examples/32.png +3 -0
- demo_examples/33.png +3 -0
- demo_examples/35.png +3 -0
- demo_examples/cup.png +3 -0
- demo_examples/teapot.png +3 -0
- gradio_demo.py +415 -0
- gradio_model3dcolor-0.0.1-py3-none-any.whl +0 -0
- gradio_model3dnormal-0.0.1-py3-none-any.whl +0 -0
- ply2glb.py +57 -0
- sam_inference.py +40 -0
- style.css +32 -0
- utils.py +86 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,33 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
demo_examples/ filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
demo_examples/*.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
demo_examples/cup.jpg filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
demo_examples/teapot.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
demo_examples/cup.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
demo_examples/01.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
demo_examples/12.png filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
demo_examples/17.jpg filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
demo_examples/25.png filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
demo_examples/26.png filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
demo_examples/27.png filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
demo_examples/29.png filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
demo_examples/31.png filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
demo_examples/33.png filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
demo_examples/35.png filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
demo_examples/05.png filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
demo_examples/22.png filter=lfs diff=lfs merge=lfs -text
|
| 53 |
+
demo_examples/23.png filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
demo_examples/04.png filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
demo_examples/09.png filter=lfs diff=lfs merge=lfs -text
|
| 56 |
+
demo_examples/18.jpg filter=lfs diff=lfs merge=lfs -text
|
| 57 |
+
demo_examples/19.jpg filter=lfs diff=lfs merge=lfs -text
|
| 58 |
+
demo_examples/24.png filter=lfs diff=lfs merge=lfs -text
|
| 59 |
+
demo_examples/32.png filter=lfs diff=lfs merge=lfs -text
|
| 60 |
+
demo_examples/03.png filter=lfs diff=lfs merge=lfs -text
|
| 61 |
+
demo_examples/07.png filter=lfs diff=lfs merge=lfs -text
|
| 62 |
+
demo_examples/14.png filter=lfs diff=lfs merge=lfs -text
|
| 63 |
+
demo_examples/21.png filter=lfs diff=lfs merge=lfs -text
|
| 64 |
+
demo_examples/28.png filter=lfs diff=lfs merge=lfs -text
|
| 65 |
+
demo_examples/30.png filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
LABEL version="1.0.2"
|
| 4 |
+
|
| 5 |
+
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
|
| 6 |
+
ENV TZ=America/Los_Angeles
|
| 7 |
+
RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone
|
| 8 |
+
|
| 9 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 10 |
+
curl \
|
| 11 |
+
libx11-6 \
|
| 12 |
+
libxrender1 \
|
| 13 |
+
libxxf86vm1 \
|
| 14 |
+
libxfixes3 \
|
| 15 |
+
libxi6 \
|
| 16 |
+
libxkbcommon0 \
|
| 17 |
+
libgomp1 \
|
| 18 |
+
libsm6 \
|
| 19 |
+
libgl1 \
|
| 20 |
+
git
|
| 21 |
+
|
| 22 |
+
RUN pip3 install --no-cache-dir \
|
| 23 |
+
numpy \
|
| 24 |
+
trimesh \
|
| 25 |
+
Pillow \
|
| 26 |
+
gradio==4.40.0 \
|
| 27 |
+
bpy \
|
| 28 |
+
opencv-python-headless
|
| 29 |
+
|
| 30 |
+
RUN pip3 install \
|
| 31 |
+
torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
| 32 |
+
|
| 33 |
+
RUN pip3 install git+https://github.com/facebookresearch/segment-anything.git
|
| 34 |
+
|
| 35 |
+
# Set up a new user named "user" with user ID 1000
|
| 36 |
+
RUN useradd -m -u 1000 user
|
| 37 |
+
# Switch to the "user" user
|
| 38 |
+
USER user
|
| 39 |
+
# Set home to the user's home directory
|
| 40 |
+
ENV HOME=/home/user \
|
| 41 |
+
PATH=/home/user/.local/bin:$PATH \
|
| 42 |
+
PYTHONPATH=$HOME/app \
|
| 43 |
+
PYTHONUNBUFFERED=1 \
|
| 44 |
+
SYSTEM=spaces
|
| 45 |
+
# Set the working directory to the user's home directory
|
| 46 |
+
WORKDIR $HOME/app
|
| 47 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 48 |
+
COPY --chown=user . $HOME/app
|
| 49 |
+
|
| 50 |
+
RUN pip3 install gradio_model3dcolor-0.0.1-py3-none-any.whl
|
| 51 |
+
RUN pip3 install gradio_model3dnormal-0.0.1-py3-none-any.whl
|
| 52 |
+
|
| 53 |
+
RUN mkdir ./checkpoints/ && curl https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth -o ./checkpoints/sam_vit_h_4b8939.pth
|
| 54 |
+
|
| 55 |
+
CMD ["python3", "gradio_demo.py"]
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title: MeshFormer
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: gray
|
| 6 |
sdk: docker
|
|
|
|
| 1 |
---
|
| 2 |
+
title: MeshFormer Dev
|
| 3 |
+
emoji: 🏢
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: gray
|
| 6 |
sdk: docker
|
demo_examples/01.png
ADDED
|
Git LFS Details
|
demo_examples/03.png
ADDED
|
Git LFS Details
|
demo_examples/04.png
ADDED
|
Git LFS Details
|
demo_examples/05.png
ADDED
|
Git LFS Details
|
demo_examples/07.png
ADDED
|
Git LFS Details
|
demo_examples/09.png
ADDED
|
Git LFS Details
|
demo_examples/12.png
ADDED
|
Git LFS Details
|
demo_examples/14.png
ADDED
|
Git LFS Details
|
demo_examples/17.jpg
ADDED
|
Git LFS Details
|
demo_examples/18.jpg
ADDED
|
Git LFS Details
|
demo_examples/19.jpg
ADDED
|
Git LFS Details
|
demo_examples/21.png
ADDED
|
Git LFS Details
|
demo_examples/22.png
ADDED
|
Git LFS Details
|
demo_examples/23.png
ADDED
|
Git LFS Details
|
demo_examples/24.png
ADDED
|
Git LFS Details
|
demo_examples/25.png
ADDED
|
Git LFS Details
|
demo_examples/26.png
ADDED
|
Git LFS Details
|
demo_examples/27.png
ADDED
|
Git LFS Details
|
demo_examples/28.png
ADDED
|
Git LFS Details
|
demo_examples/29.png
ADDED
|
Git LFS Details
|
demo_examples/30.png
ADDED
|
Git LFS Details
|
demo_examples/31.png
ADDED
|
Git LFS Details
|
demo_examples/32.png
ADDED
|
Git LFS Details
|
demo_examples/33.png
ADDED
|
Git LFS Details
|
demo_examples/35.png
ADDED
|
Git LFS Details
|
demo_examples/cup.png
ADDED
|
Git LFS Details
|
demo_examples/teapot.png
ADDED
|
Git LFS Details
|
gradio_demo.py
ADDED
|
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
import subprocess
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from functools import partial
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from sam_inference import get_sam_predictor, sam_seg
|
| 10 |
+
from utils import blend_seg, blend_seg_pure
|
| 11 |
+
import cv2
|
| 12 |
+
import uuid
|
| 13 |
+
import torch
|
| 14 |
+
import trimesh
|
| 15 |
+
from huggingface_hub import snapshot_download
|
| 16 |
+
|
| 17 |
+
from gradio_model3dcolor import Model3DColor
|
| 18 |
+
from gradio_model3dnormal import Model3DNormal
|
| 19 |
+
|
| 20 |
+
code_dir = snapshot_download("sudo-ai/MeshFormer-API", token=os.environ['HF_TOKEN'])
|
| 21 |
+
|
| 22 |
+
with open(f'{code_dir}/api.json', 'r') as file:
|
| 23 |
+
api_dict = json.load(file)
|
| 24 |
+
SEG_CMD = api_dict["SEG_CMD"]
|
| 25 |
+
MESH_CMD = api_dict["MESH_CMD"]
|
| 26 |
+
|
| 27 |
+
STYLE = """
|
| 28 |
+
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.2/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-T3c6CoIi6uLrA9TneNEoa7RxnatzjcDSCmG1MXxSR1GAsXEV/Dwwykc2MPK8M2HN" crossorigin="anonymous">
|
| 29 |
+
"""
|
| 30 |
+
# info (info-circle-fill), cursor (hand-index-thumb), wait (hourglass-split), done (check-circle)
|
| 31 |
+
ICONS = {
|
| 32 |
+
"info": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-info-circle-fill flex-shrink-0 me-2" viewBox="0 0 16 16">
|
| 33 |
+
<path d="M8 16A8 8 0 1 0 8 0a8 8 0 0 0 0 16zm.93-9.412-1 4.705c-.07.34.029.533.304.533.194 0 .487-.07.686-.246l-.088.416c-.287.346-.92.598-1.465.598-.703 0-1.002-.422-.808-1.319l.738-3.468c.064-.293.006-.399-.287-.47l-.451-.081.082-.381 2.29-.287zM8 5.5a1 1 0 1 1 0-2 1 1 0 0 1 0 2z"/>
|
| 34 |
+
</svg>""",
|
| 35 |
+
"cursor": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-hand-index-thumb-fill flex-shrink-0 me-2" viewBox="0 0 16 16">
|
| 36 |
+
<path d="M8.5 1.75v2.716l.047-.002c.312-.012.742-.016 1.051.046.28.056.543.18.738.288.273.152.456.385.56.642l.132-.012c.312-.024.794-.038 1.158.108.37.148.689.487.88.716.075.09.141.175.195.248h.582a2 2 0 0 1 1.99 2.199l-.272 2.715a3.5 3.5 0 0 1-.444 1.389l-1.395 2.441A1.5 1.5 0 0 1 12.42 16H6.118a1.5 1.5 0 0 1-1.342-.83l-1.215-2.43L1.07 8.589a1.517 1.517 0 0 1 2.373-1.852L5 8.293V1.75a1.75 1.75 0 0 1 3.5 0z"/>
|
| 37 |
+
</svg>""",
|
| 38 |
+
"wait": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-hourglass-split flex-shrink-0 me-2" viewBox="0 0 16 16">
|
| 39 |
+
<path d="M2.5 15a.5.5 0 1 1 0-1h1v-1a4.5 4.5 0 0 1 2.557-4.06c.29-.139.443-.377.443-.59v-.7c0-.213-.154-.451-.443-.59A4.5 4.5 0 0 1 3.5 3V2h-1a.5.5 0 0 1 0-1h11a.5.5 0 0 1 0 1h-1v1a4.5 4.5 0 0 1-2.557 4.06c-.29.139-.443.377-.443.59v.7c0 .213.154.451.443.59A4.5 4.5 0 0 1 12.5 13v1h1a.5.5 0 0 1 0 1h-11zm2-13v1c0 .537.12 1.045.337 1.5h6.326c.216-.455.337-.963.337-1.5V2h-7zm3 6.35c0 .701-.478 1.236-1.011 1.492A3.5 3.5 0 0 0 4.5 13s.866-1.299 3-1.48V8.35zm1 0v3.17c2.134.181 3 1.48 3 1.48a3.5 3.5 0 0 0-1.989-3.158C8.978 9.586 8.5 9.052 8.5 8.351z"/>
|
| 40 |
+
</svg>""",
|
| 41 |
+
"done": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-check-circle-fill flex-shrink-0 me-2" viewBox="0 0 16 16">
|
| 42 |
+
<path d="M16 8A8 8 0 1 1 0 8a8 8 0 0 1 16 0zm-3.97-3.03a.75.75 0 0 0-1.08.022L7.477 9.417 5.384 7.323a.75.75 0 0 0-1.06 1.06L6.97 11.03a.75.75 0 0 0 1.079-.02l3.992-4.99a.75.75 0 0 0-.01-1.05z"/>
|
| 43 |
+
</svg>""",
|
| 44 |
+
}
|
| 45 |
+
icons2alert = {
|
| 46 |
+
"info": "primary", # blue
|
| 47 |
+
"cursor": "info", # light blue
|
| 48 |
+
"wait": "secondary", # gray
|
| 49 |
+
"done": "success", # green
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def message(text, icon_type="info"):
|
| 54 |
+
return f"""{STYLE} <div class="alert alert-{icons2alert[icon_type]} d-flex align-items-center" role="alert"> {ICONS[icon_type]}
|
| 55 |
+
<div>
|
| 56 |
+
{text}
|
| 57 |
+
</div>
|
| 58 |
+
</div>"""
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def preprocess(tmp_dir, input_img, idx=None):
|
| 62 |
+
if idx is not None:
|
| 63 |
+
print("image idx:", int(idx))
|
| 64 |
+
input_img = Image.open(input_img[int(idx)]["name"])
|
| 65 |
+
input_img.save(f"{tmp_dir}/input.png")
|
| 66 |
+
# print(SEG_CMD.format(tmp_dir=tmp_dir))
|
| 67 |
+
os.system(SEG_CMD.format(tmp_dir=tmp_dir))
|
| 68 |
+
processed_img = Image.open(f"{tmp_dir}/seg.png")
|
| 69 |
+
return processed_img.resize((320, 320), Image.Resampling.LANCZOS)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def ply_to_glb(ply_path):
|
| 73 |
+
result = subprocess.run(
|
| 74 |
+
["python", "ply2glb.py", "--", ply_path],
|
| 75 |
+
capture_output=True,
|
| 76 |
+
text=True,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
print("Output of blender script:")
|
| 80 |
+
print(result.stdout)
|
| 81 |
+
|
| 82 |
+
glb_path = ply_path.replace(".ply", ".glb")
|
| 83 |
+
return glb_path
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def mesh_gen(tmp_dir, simplify, num_inference_steps):
|
| 87 |
+
# print(MESH_CMD.format(tmp_dir=tmp_dir, num_inference_steps=num_inference_steps))
|
| 88 |
+
os.system(MESH_CMD.format(tmp_dir=tmp_dir, num_inference_steps=num_inference_steps))
|
| 89 |
+
|
| 90 |
+
mesh = trimesh.load_mesh(f"{tmp_dir}/mesh.ply")
|
| 91 |
+
vertex_normals = mesh.vertex_normals
|
| 92 |
+
colors = (-vertex_normals + 1) / 2.0
|
| 93 |
+
colors = (colors * 255).astype(np.uint8) # Convert to 8-bit color
|
| 94 |
+
mesh.visual.vertex_colors = colors[..., [2, 0, 1]] # RGB -> BRG
|
| 95 |
+
mesh.export(f"{tmp_dir}/mesh_normal.ply", file_type="ply")
|
| 96 |
+
|
| 97 |
+
color_path = ply_to_glb(f"{tmp_dir}/mesh.ply")
|
| 98 |
+
normal_path = ply_to_glb(f"{tmp_dir}/mesh_normal.ply")
|
| 99 |
+
|
| 100 |
+
return color_path, normal_path
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def create_tmp_dir():
|
| 104 |
+
tmp_dir = (
|
| 105 |
+
"demo_exp/"
|
| 106 |
+
+ datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
| 107 |
+
+ "_"
|
| 108 |
+
+ str(uuid.uuid4())[:4]
|
| 109 |
+
)
|
| 110 |
+
os.makedirs(tmp_dir, exist_ok=True)
|
| 111 |
+
print("create tmp_exp_dir", tmp_dir)
|
| 112 |
+
return tmp_dir
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def vis_seg(checkbox):
|
| 116 |
+
if checkbox:
|
| 117 |
+
print("Show manual seg windows")
|
| 118 |
+
return (
|
| 119 |
+
[gr.Image(value=None, visible=True)] * 2
|
| 120 |
+
+ [gr.Radio(visible=True)]
|
| 121 |
+
+ [[], gr.Checkbox(visible=True)]
|
| 122 |
+
)
|
| 123 |
+
else:
|
| 124 |
+
print("Clear manual seg")
|
| 125 |
+
return (
|
| 126 |
+
[gr.Image(visible=False)] * 2
|
| 127 |
+
+ [gr.Radio(visible=False)]
|
| 128 |
+
+ [[], gr.Checkbox(visible=False)]
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def calc_feat(checkbox, predictor, input_image, idx=None):
|
| 133 |
+
if checkbox:
|
| 134 |
+
if idx is not None:
|
| 135 |
+
print("image idx:", int(idx))
|
| 136 |
+
input_image = Image.open(input_image[int(idx)]["name"])
|
| 137 |
+
input_image.thumbnail([512, 512], Image.Resampling.LANCZOS)
|
| 138 |
+
w, h = input_image.size
|
| 139 |
+
print("image size:", w, h)
|
| 140 |
+
side_len = np.max((w, h))
|
| 141 |
+
seg_in = Image.new(input_image.mode, (side_len, side_len), (255, 255, 255))
|
| 142 |
+
seg_in.paste(
|
| 143 |
+
input_image, (np.max((0, (h - w) // 2)), np.max((0, (w - h) // 2)))
|
| 144 |
+
)
|
| 145 |
+
print("Calculating image SAM feature...")
|
| 146 |
+
predictor.set_image(np.array(seg_in.convert("RGB")))
|
| 147 |
+
torch.cuda.empty_cache()
|
| 148 |
+
return gr.Image(value=seg_in, visible=True)
|
| 149 |
+
else:
|
| 150 |
+
print("Quit manual seg")
|
| 151 |
+
raise ValueError("Quit manual seg")
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def manual_seg(
|
| 155 |
+
predictor,
|
| 156 |
+
seg_in,
|
| 157 |
+
selected_points,
|
| 158 |
+
fg_bg_radio,
|
| 159 |
+
tmp_dir,
|
| 160 |
+
seg_mask_opt,
|
| 161 |
+
evt: gr.SelectData,
|
| 162 |
+
):
|
| 163 |
+
print("Start segmentation")
|
| 164 |
+
selected_points.append(
|
| 165 |
+
{"coord": evt.index, "add_del": fg_bg_radio == "+ (add mask)"}
|
| 166 |
+
)
|
| 167 |
+
input_points = np.array([point["coord"] for point in selected_points])
|
| 168 |
+
input_labels = np.array([point["add_del"] for point in selected_points])
|
| 169 |
+
out_image = sam_seg(
|
| 170 |
+
predictor, np.array(seg_in.convert("RGB")), input_points, input_labels
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# seg_in.save(f"{tmp_dir}/in.png")
|
| 174 |
+
# out_image.save(f"{tmp_dir}/out.png")
|
| 175 |
+
if seg_mask_opt:
|
| 176 |
+
segmentation = blend_seg_pure(
|
| 177 |
+
seg_in.convert("RGB"), out_image, input_points, input_labels
|
| 178 |
+
)
|
| 179 |
+
else:
|
| 180 |
+
segmentation = blend_seg(
|
| 181 |
+
seg_in.convert("RGB"), out_image, input_points, input_labels
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# recenter and rescale
|
| 185 |
+
image_arr = np.array(out_image)
|
| 186 |
+
ret, mask = cv2.threshold(
|
| 187 |
+
np.array(out_image.split()[-1]), 0, 255, cv2.THRESH_BINARY
|
| 188 |
+
)
|
| 189 |
+
x, y, w, h = cv2.boundingRect(mask)
|
| 190 |
+
max_size = max(w, h)
|
| 191 |
+
ratio = 0.75
|
| 192 |
+
side_len = int(max_size / ratio)
|
| 193 |
+
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
|
| 194 |
+
center = side_len // 2
|
| 195 |
+
padded_image[
|
| 196 |
+
center - h // 2 : center - h // 2 + h, center - w // 2 : center - w // 2 + w
|
| 197 |
+
] = image_arr[y : y + h, x : x + w]
|
| 198 |
+
rgba = Image.fromarray(padded_image)
|
| 199 |
+
rgba.save(f"{tmp_dir}/seg.png")
|
| 200 |
+
torch.cuda.empty_cache()
|
| 201 |
+
|
| 202 |
+
return segmentation.resize((380, 380), Image.Resampling.LANCZOS), rgba.resize(
|
| 203 |
+
(320, 320), Image.Resampling.LANCZOS
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
custom_theme = gr.themes.Soft(primary_hue="blue").set(
|
| 208 |
+
button_secondary_background_fill="*neutral_100",
|
| 209 |
+
button_secondary_background_fill_hover="*neutral_200",
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
with gr.Blocks(title="MeshFormer Demo", css="style.css", theme=custom_theme) as demo:
|
| 213 |
+
with gr.Row():
|
| 214 |
+
gr.Markdown(
|
| 215 |
+
"# MeshFormer: High-Quality Mesh Generation with 3D-Guided Reconstruction Model"
|
| 216 |
+
)
|
| 217 |
+
with gr.Row():
|
| 218 |
+
gr.Markdown(
|
| 219 |
+
"[Project Page](https://meshformer3d.github.io/) | [arXiv](https://arxiv.org/abs/TBD)"
|
| 220 |
+
)
|
| 221 |
+
with gr.Row():
|
| 222 |
+
gr.Markdown(
|
| 223 |
+
"""
|
| 224 |
+
<div>
|
| 225 |
+
<b><em>Check out <a href="https://www.sudo.ai/3dgen">Hillbot (sudoAI)</a> for more details and advanced features.</em></b>
|
| 226 |
+
</div>
|
| 227 |
+
"""
|
| 228 |
+
)
|
| 229 |
+
with gr.Row():
|
| 230 |
+
guide_text_i2m = gr.HTML(message("Please input an image!"), visible=True)
|
| 231 |
+
|
| 232 |
+
tmp_dir_img = gr.State("./demo_exp/placeholder")
|
| 233 |
+
tmp_dir_txt = gr.State("./demo_exp/placeholder")
|
| 234 |
+
tmp_dir_3t3 = gr.State("./demo_exp/placeholder")
|
| 235 |
+
|
| 236 |
+
example_folder = os.path.join(os.path.dirname(__file__), "demo_examples")
|
| 237 |
+
example_fns = os.listdir(example_folder)
|
| 238 |
+
example_fns.sort()
|
| 239 |
+
img_examples = [
|
| 240 |
+
os.path.join(example_folder, x) for x in example_fns
|
| 241 |
+
] # if x.endswith('.png') or x.endswith('.')
|
| 242 |
+
|
| 243 |
+
with gr.Row(variant="panel"):
|
| 244 |
+
with gr.Row():
|
| 245 |
+
with gr.Column(scale=8):
|
| 246 |
+
input_image = gr.Image(
|
| 247 |
+
type="pil",
|
| 248 |
+
image_mode="RGBA",
|
| 249 |
+
height=320,
|
| 250 |
+
label="Input Image",
|
| 251 |
+
interactive=True,
|
| 252 |
+
)
|
| 253 |
+
gr.Examples(
|
| 254 |
+
examples=img_examples,
|
| 255 |
+
inputs=[input_image],
|
| 256 |
+
outputs=[input_image],
|
| 257 |
+
cache_examples=False,
|
| 258 |
+
label="Image Examples (Click one of the images below to start)",
|
| 259 |
+
examples_per_page=27,
|
| 260 |
+
)
|
| 261 |
+
with gr.Accordion("Options", open=False):
|
| 262 |
+
img_simplify = gr.Checkbox(
|
| 263 |
+
False, label="simplify the generated mesh", visible=False
|
| 264 |
+
)
|
| 265 |
+
n_steps_img = gr.Slider(
|
| 266 |
+
value=28,
|
| 267 |
+
minimum=15,
|
| 268 |
+
maximum=100,
|
| 269 |
+
step=1,
|
| 270 |
+
label="number of inference steps",
|
| 271 |
+
)
|
| 272 |
+
# manual segmentation
|
| 273 |
+
checkbox_manual_seg = gr.Checkbox(False, label="manual segmentation")
|
| 274 |
+
with gr.Row():
|
| 275 |
+
with gr.Column(scale=1):
|
| 276 |
+
seg_in = gr.Image(
|
| 277 |
+
type="pil",
|
| 278 |
+
image_mode="RGBA",
|
| 279 |
+
label="Click to segment",
|
| 280 |
+
visible=False,
|
| 281 |
+
show_download_button=False,
|
| 282 |
+
height=380,
|
| 283 |
+
)
|
| 284 |
+
with gr.Column(scale=1):
|
| 285 |
+
seg_out = gr.Image(
|
| 286 |
+
type="pil",
|
| 287 |
+
image_mode="RGBA",
|
| 288 |
+
label="Segmentation",
|
| 289 |
+
interactive=False,
|
| 290 |
+
visible=False,
|
| 291 |
+
show_download_button=False,
|
| 292 |
+
height=380,
|
| 293 |
+
elem_id="disp_image",
|
| 294 |
+
)
|
| 295 |
+
fg_bg_radio = gr.Radio(
|
| 296 |
+
["+ (add mask)", "- (remove area)"],
|
| 297 |
+
value="+ (add mask)",
|
| 298 |
+
info="Select foreground (+) or background (-) point",
|
| 299 |
+
label="Point label",
|
| 300 |
+
visible=False,
|
| 301 |
+
interactive=True,
|
| 302 |
+
)
|
| 303 |
+
seg_mask_opt = gr.Checkbox(
|
| 304 |
+
True,
|
| 305 |
+
label="show foreground mask in manual segmentation",
|
| 306 |
+
visible=False,
|
| 307 |
+
)
|
| 308 |
+
# run
|
| 309 |
+
img_run_btn = gr.Button(
|
| 310 |
+
"Generate", variant="primary", interactive=False
|
| 311 |
+
)
|
| 312 |
+
with gr.Column(scale=6):
|
| 313 |
+
processed_image = gr.Image(
|
| 314 |
+
type="pil",
|
| 315 |
+
label="Processed Image",
|
| 316 |
+
interactive=False,
|
| 317 |
+
height=320,
|
| 318 |
+
image_mode="RGBA",
|
| 319 |
+
elem_id="disp_image",
|
| 320 |
+
)
|
| 321 |
+
# with gr.Row():
|
| 322 |
+
# mesh_output = gr.Model3D(label="Generated Mesh", elem_id="model-3d-out")
|
| 323 |
+
mesh_output_normal = Model3DNormal(
|
| 324 |
+
label="Generated Mesh (normal)",
|
| 325 |
+
elem_id="mesh-normal-out",
|
| 326 |
+
height=400,
|
| 327 |
+
)
|
| 328 |
+
mesh_output = Model3DColor(
|
| 329 |
+
label="Generated Mesh (color)",
|
| 330 |
+
elem_id="mesh-out",
|
| 331 |
+
height=400,
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
predictor = gr.State(value=get_sam_predictor())
|
| 335 |
+
selected_points = gr.State(value=[])
|
| 336 |
+
selected_points_t2i = gr.State(value=[])
|
| 337 |
+
|
| 338 |
+
disable_checkbox = lambda: gr.Checkbox(value=False)
|
| 339 |
+
disable_button = lambda: gr.Button(interactive=False)
|
| 340 |
+
enable_button = lambda: gr.Button(interactive=True)
|
| 341 |
+
update_guide = lambda GUIDE_TEXT, icon_type="info": gr.HTML(
|
| 342 |
+
value=message(GUIDE_TEXT, icon_type)
|
| 343 |
+
)
|
| 344 |
+
update_md = lambda GUIDE_TEXT: gr.Markdown(value=GUIDE_TEXT)
|
| 345 |
+
|
| 346 |
+
def is_img_clear(input_image):
|
| 347 |
+
if not input_image:
|
| 348 |
+
raise ValueError("Input image cleared.")
|
| 349 |
+
|
| 350 |
+
checkbox_manual_seg.change(
|
| 351 |
+
vis_seg,
|
| 352 |
+
inputs=[checkbox_manual_seg],
|
| 353 |
+
outputs=[seg_in, seg_out, fg_bg_radio, selected_points, seg_mask_opt],
|
| 354 |
+
queue=False,
|
| 355 |
+
).success(
|
| 356 |
+
calc_feat,
|
| 357 |
+
inputs=[checkbox_manual_seg, predictor, input_image],
|
| 358 |
+
outputs=[seg_in],
|
| 359 |
+
).success(
|
| 360 |
+
fn=create_tmp_dir, outputs=[tmp_dir_img], queue=False
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
seg_in.select(
|
| 364 |
+
manual_seg,
|
| 365 |
+
[predictor, seg_in, selected_points, fg_bg_radio, tmp_dir_img, seg_mask_opt],
|
| 366 |
+
[seg_out, processed_image],
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
input_image.change(disable_button, outputs=img_run_btn, queue=False).success(
|
| 370 |
+
disable_checkbox, outputs=checkbox_manual_seg, queue=False
|
| 371 |
+
).success(fn=is_img_clear, inputs=input_image, queue=False).success(
|
| 372 |
+
fn=create_tmp_dir, outputs=tmp_dir_img, queue=False
|
| 373 |
+
).success(
|
| 374 |
+
fn=partial(update_guide, "Preprocessing the image!", "wait"),
|
| 375 |
+
outputs=[guide_text_i2m],
|
| 376 |
+
queue=False,
|
| 377 |
+
).success(
|
| 378 |
+
fn=preprocess,
|
| 379 |
+
inputs=[tmp_dir_img, input_image],
|
| 380 |
+
outputs=[processed_image],
|
| 381 |
+
queue=True,
|
| 382 |
+
).success(
|
| 383 |
+
fn=partial(
|
| 384 |
+
update_guide,
|
| 385 |
+
"Click <b>Generate</b> to generate mesh! If the input image was not segmented accurately, please adjust it using <b>manual segmentation</b>.",
|
| 386 |
+
"cursor",
|
| 387 |
+
),
|
| 388 |
+
outputs=[guide_text_i2m],
|
| 389 |
+
queue=False,
|
| 390 |
+
).success(
|
| 391 |
+
enable_button, outputs=img_run_btn, queue=False
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
img_run_btn.click(
|
| 395 |
+
fn=partial(update_guide, "Generating the mesh!", "wait"),
|
| 396 |
+
outputs=[guide_text_i2m],
|
| 397 |
+
queue=False,
|
| 398 |
+
).success(
|
| 399 |
+
fn=mesh_gen,
|
| 400 |
+
inputs=[tmp_dir_img, img_simplify, n_steps_img],
|
| 401 |
+
outputs=[mesh_output, mesh_output_normal],
|
| 402 |
+
queue=True,
|
| 403 |
+
).success(
|
| 404 |
+
fn=partial(
|
| 405 |
+
update_guide,
|
| 406 |
+
"Successfully generated the mesh. (It might take a few seconds to load the mesh)",
|
| 407 |
+
"done",
|
| 408 |
+
),
|
| 409 |
+
outputs=[guide_text_i2m],
|
| 410 |
+
queue=False,
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
demo.queue().launch(
|
| 414 |
+
debug=True, share=False, inline=False, show_api=False, server_name="0.0.0.0"
|
| 415 |
+
)
|
gradio_model3dcolor-0.0.1-py3-none-any.whl
ADDED
|
Binary file (995 kB). View file
|
|
|
gradio_model3dnormal-0.0.1-py3-none-any.whl
ADDED
|
Binary file (995 kB). View file
|
|
|
ply2glb.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import bpy
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# Clear the scene
|
| 6 |
+
bpy.ops.object.select_all(action="SELECT")
|
| 7 |
+
bpy.ops.object.delete(use_global=False)
|
| 8 |
+
|
| 9 |
+
# Load mesh.ply
|
| 10 |
+
ply_path = sys.argv[-1]
|
| 11 |
+
bpy.ops.wm.ply_import(filepath=ply_path)
|
| 12 |
+
|
| 13 |
+
# Create a new material
|
| 14 |
+
material = bpy.data.materials.new(name="New_Material")
|
| 15 |
+
material.use_nodes = True
|
| 16 |
+
|
| 17 |
+
# Assign the material to the object
|
| 18 |
+
obj = bpy.context.selected_objects[0]
|
| 19 |
+
if obj.data.materials:
|
| 20 |
+
obj.data.materials[0] = material
|
| 21 |
+
else:
|
| 22 |
+
obj.data.materials.append(material)
|
| 23 |
+
|
| 24 |
+
# Add a Vertex Color node and link it
|
| 25 |
+
nodes = material.node_tree.nodes
|
| 26 |
+
links = material.node_tree.links
|
| 27 |
+
|
| 28 |
+
# Clear default nodes
|
| 29 |
+
for node in nodes:
|
| 30 |
+
nodes.remove(node)
|
| 31 |
+
|
| 32 |
+
# Create nodes
|
| 33 |
+
output_node = nodes.new(type="ShaderNodeOutputMaterial")
|
| 34 |
+
vertex_color_node = nodes.new(type="ShaderNodeVertexColor")
|
| 35 |
+
principled_bsdf = nodes.new(type="ShaderNodeBsdfPrincipled")
|
| 36 |
+
|
| 37 |
+
# Set the vertex color layer name
|
| 38 |
+
vertex_color_node.layer_name = "Col"
|
| 39 |
+
|
| 40 |
+
# Arrange nodes
|
| 41 |
+
vertex_color_node.location = (-300, 0)
|
| 42 |
+
principled_bsdf.location = (0, 0)
|
| 43 |
+
output_node.location = (300, 0)
|
| 44 |
+
|
| 45 |
+
# Link nodes
|
| 46 |
+
links.new(vertex_color_node.outputs["Color"], principled_bsdf.inputs["Base Color"])
|
| 47 |
+
links.new(principled_bsdf.outputs["BSDF"], output_node.inputs["Surface"])
|
| 48 |
+
|
| 49 |
+
# Rotate the object
|
| 50 |
+
bpy.context.object.rotation_euler[2] = 1.57079
|
| 51 |
+
|
| 52 |
+
# Export the scene to a glTF file
|
| 53 |
+
glb_path = ply_path.replace(".ply", ".glb")
|
| 54 |
+
bpy.ops.export_scene.gltf(filepath=glb_path, export_format="GLB")
|
| 55 |
+
|
| 56 |
+
# Free up memory
|
| 57 |
+
bpy.ops.wm.read_factory_settings(use_empty=True)
|
sam_inference.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
from segment_anything import SamPredictor, sam_model_registry
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
models = {
|
| 7 |
+
'vit_b': './checkpoints/sam_vit_b_01ec64.pth',
|
| 8 |
+
'vit_l': './checkpoints/sam_vit_l_0b3195.pth',
|
| 9 |
+
'vit_h': './checkpoints/sam_vit_h_4b8939.pth'
|
| 10 |
+
}
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_sam_predictor(model_type='vit_h', device=None, image=None):
|
| 14 |
+
if device is None and torch.cuda.is_available():
|
| 15 |
+
device = 'cuda'
|
| 16 |
+
elif device is None:
|
| 17 |
+
device = 'cpu'
|
| 18 |
+
# sam model
|
| 19 |
+
sam = sam_model_registry[model_type](checkpoint=models[model_type])
|
| 20 |
+
sam = sam.to(device)
|
| 21 |
+
|
| 22 |
+
predictor = SamPredictor(sam)
|
| 23 |
+
if image is not None:
|
| 24 |
+
predictor.set_image(image)
|
| 25 |
+
return predictor
|
| 26 |
+
|
| 27 |
+
def sam_seg(predictor, input_img, input_points, input_labels):
|
| 28 |
+
masks, scores, logits = predictor.predict(
|
| 29 |
+
point_coords=input_points,
|
| 30 |
+
point_labels=input_labels,
|
| 31 |
+
multimask_output=True,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
opt_idx = np.argmax(scores)
|
| 35 |
+
mask = masks[opt_idx]
|
| 36 |
+
out_image = np.zeros((input_img.shape[0], input_img.shape[1], 4), dtype=np.uint8)
|
| 37 |
+
out_image[:, :, :3] = input_img
|
| 38 |
+
out_image[:, :, 3] = mask.astype(np.uint8) * 255
|
| 39 |
+
torch.cuda.empty_cache()
|
| 40 |
+
return Image.fromarray(out_image, mode='RGBA')
|
style.css
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#model-3d-out {
|
| 2 |
+
height: 400px;
|
| 3 |
+
}
|
| 4 |
+
#disp_image {
|
| 5 |
+
text-align: center; /* Horizontally center the content */
|
| 6 |
+
}
|
| 7 |
+
|
| 8 |
+
.centered {
|
| 9 |
+
text-align: center; /* Horizontally center the content */
|
| 10 |
+
}
|
| 11 |
+
.centered img {
|
| 12 |
+
display: block; /* Make the image a block element */
|
| 13 |
+
margin: 0 auto; /* Center the block element (the image) horizontally */
|
| 14 |
+
height: 100px;
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
#prompt-container{
|
| 18 |
+
gap: 0;
|
| 19 |
+
}
|
| 20 |
+
#prompt-container .form{
|
| 21 |
+
border-top-right-radius: 0;
|
| 22 |
+
border-bottom-right-radius: 0;
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
#gen-button{
|
| 26 |
+
border-top-left-radius:0;
|
| 27 |
+
border-bottom-left-radius:0;
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
.tab_at_top button.selected{
|
| 31 |
+
font-size: 24px !important;
|
| 32 |
+
}
|
utils.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
# marker choices
|
| 6 |
+
COLORS = [(246, 195, 203), (112, 221, 208)]
|
| 7 |
+
MARKERS = [1, 5]
|
| 8 |
+
|
| 9 |
+
def blend_seg(input_image, segmented_image, dot_locations, dot_labels, contour_color=(63, 126, 174)):
|
| 10 |
+
input_image = np.array(input_image)
|
| 11 |
+
segmented_image = np.array(segmented_image)
|
| 12 |
+
|
| 13 |
+
# Create a mask for the foreground (non-transparent) pixels
|
| 14 |
+
foreground_mask = segmented_image[:, :, 3] > 0
|
| 15 |
+
|
| 16 |
+
# Create a mask for the background (transparent) pixels
|
| 17 |
+
background_mask = ~foreground_mask
|
| 18 |
+
|
| 19 |
+
# Darken the background pixels
|
| 20 |
+
darkened_background = input_image.copy()
|
| 21 |
+
darkened_background[background_mask] = darkened_background[background_mask] * 0.52 # Adjust the multiplier as needed to control darkness
|
| 22 |
+
|
| 23 |
+
# Create an empty mask for the boundary
|
| 24 |
+
boundary_mask = np.zeros_like(segmented_image[:, :, 3], dtype=np.uint8)
|
| 25 |
+
solid_boundary_mask = np.zeros_like(segmented_image[:, :, 3], dtype=np.uint8)
|
| 26 |
+
|
| 27 |
+
# Find the contour of the segmented region
|
| 28 |
+
contours, _ = cv2.findContours(
|
| 29 |
+
segmented_image[:, :, 3], cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Draw the boundary on the boundary mask
|
| 33 |
+
cv2.drawContours(boundary_mask, contours, -1, (255), thickness=6)
|
| 34 |
+
cv2.drawContours(solid_boundary_mask, contours, -1, (255), thickness=2)
|
| 35 |
+
|
| 36 |
+
blur_mask = cv2.GaussianBlur(boundary_mask, (0, 0), sigmaX=4)
|
| 37 |
+
|
| 38 |
+
# Create a mask for the contour region
|
| 39 |
+
contour_region_mask = (blur_mask > 0)
|
| 40 |
+
|
| 41 |
+
# Blend the contour color with the existing pixel colors
|
| 42 |
+
result_image = darkened_background.copy()
|
| 43 |
+
mask_weight = 0.9 * blur_mask[contour_region_mask, None]/255
|
| 44 |
+
result_image[contour_region_mask] = (
|
| 45 |
+
darkened_background[contour_region_mask] * (1-mask_weight) + np.array(contour_color) * mask_weight
|
| 46 |
+
).astype(np.uint8)
|
| 47 |
+
|
| 48 |
+
# Overlay the contour on the result image without blending
|
| 49 |
+
result_image[solid_boundary_mask > 0] = contour_color # Set contour pixels to blue
|
| 50 |
+
|
| 51 |
+
# Draw dots at the specified locations
|
| 52 |
+
dot_radius = 6
|
| 53 |
+
for location, label in zip(dot_locations, dot_labels):
|
| 54 |
+
if label:
|
| 55 |
+
cv2.circle(result_image, location, dot_radius, COLORS[label], -1)
|
| 56 |
+
else:
|
| 57 |
+
cv2.drawMarker(result_image, location, COLORS[label], markerType=MARKERS[label],
|
| 58 |
+
markerSize=6, thickness=3)
|
| 59 |
+
|
| 60 |
+
return Image.fromarray(result_image)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def blend_seg_pure(input_image, segmented_image, dot_locations, dot_labels):
|
| 64 |
+
input_image = np.array(input_image)
|
| 65 |
+
segmented_image = np.array(segmented_image)
|
| 66 |
+
|
| 67 |
+
# Create a mask for the foreground (non-transparent) pixels
|
| 68 |
+
foreground_mask = segmented_image[:, :, 3] > 0
|
| 69 |
+
|
| 70 |
+
# Blend the foreground
|
| 71 |
+
red_foreground = input_image.copy()
|
| 72 |
+
blend_weight = 0.8
|
| 73 |
+
red_foreground[foreground_mask] = red_foreground[foreground_mask] *(1-blend_weight) + np.array((255,0,0)) * blend_weight
|
| 74 |
+
|
| 75 |
+
result_image = red_foreground
|
| 76 |
+
|
| 77 |
+
# Draw dots at the specified locations
|
| 78 |
+
dot_radius = 6
|
| 79 |
+
for location, label in zip(dot_locations, dot_labels):
|
| 80 |
+
if label:
|
| 81 |
+
cv2.circle(result_image, location, dot_radius, COLORS[label], -1)
|
| 82 |
+
else:
|
| 83 |
+
cv2.drawMarker(result_image, location, COLORS[label], markerType=MARKERS[label],
|
| 84 |
+
markerSize=6, thickness=3)
|
| 85 |
+
|
| 86 |
+
return Image.fromarray(result_image)
|