Spaces:
Runtime error
Runtime error
| import os | |
| import copy | |
| import torch | |
| import fire | |
| import gradio as gr | |
| from PIL import Image | |
| from functools import partial | |
| from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, ControlNetModel | |
| from share_btn import community_icon_html, loading_icon_html, share_js | |
| import cv2 | |
| import time | |
| import numpy as np | |
| from rembg import remove | |
| from segment_anything import sam_model_registry, SamPredictor | |
| import uuid | |
| from datetime import datetime | |
| _TITLE = '''Zero123++: a Single Image to Consistent Multi-view Diffusion Base Model''' | |
| _DESCRIPTION = ''' | |
| <div> | |
| <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2310.15110"><img src="https://img.shields.io/badge/2310.15110-f9f7f7?logo="></a> | |
| <a style="display:inline-block; margin-left: .5em" href='https://github.com/SUDO-AI-3D/zero123plus'><img src='https://img.shields.io/github/stars/SUDO-AI-3D/zero123plus?style=social' /></a> | |
| Check out our single-image-to-3D work <a href="https://sudo-ai-3d.github.io/One2345plus_page/">One-2-3-45++</a>! | |
| </div> | |
| ''' | |
| _GPU_ID = 0 | |
| if not hasattr(Image, 'Resampling'): | |
| Image.Resampling = Image | |
| def sam_init(): | |
| sam_checkpoint = os.path.join(os.path.dirname(__file__), "tmp", "sam_vit_h_4b8939.pth") | |
| model_type = "vit_h" | |
| sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}") | |
| predictor = SamPredictor(sam) | |
| return predictor | |
| def sam_segment(predictor, input_image, *bbox_coords): | |
| bbox = np.array(bbox_coords) | |
| image = np.asarray(input_image) | |
| start_time = time.time() | |
| predictor.set_image(image) | |
| masks_bbox, scores_bbox, logits_bbox = predictor.predict( | |
| box=bbox, | |
| multimask_output=True | |
| ) | |
| print(f"SAM Time: {time.time() - start_time:.3f}s") | |
| out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) | |
| out_image[:, :, :3] = image | |
| out_image_bbox = out_image.copy() | |
| out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 | |
| torch.cuda.empty_cache() | |
| return Image.fromarray(out_image_bbox, mode='RGBA') | |
| def expand2square(pil_img, background_color): | |
| width, height = pil_img.size | |
| if width == height: | |
| return pil_img | |
| elif width > height: | |
| result = Image.new(pil_img.mode, (width, width), background_color) | |
| result.paste(pil_img, (0, (width - height) // 2)) | |
| return result | |
| else: | |
| result = Image.new(pil_img.mode, (height, height), background_color) | |
| result.paste(pil_img, ((height - width) // 2, 0)) | |
| return result | |
| def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False): | |
| RES = 1024 | |
| input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS) | |
| if chk_group is not None: | |
| segment = "Background Removal" in chk_group | |
| rescale = "Rescale" in chk_group | |
| if segment: | |
| image_rem = input_image.convert('RGBA') | |
| image_nobg = remove(image_rem, alpha_matting=True) | |
| arr = np.asarray(image_nobg)[:,:,-1] | |
| x_nonzero = np.nonzero(arr.sum(axis=0)) | |
| y_nonzero = np.nonzero(arr.sum(axis=1)) | |
| x_min = int(x_nonzero[0].min()) | |
| y_min = int(y_nonzero[0].min()) | |
| x_max = int(x_nonzero[0].max()) | |
| y_max = int(y_nonzero[0].max()) | |
| input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max) | |
| # Rescale and recenter | |
| if rescale: | |
| image_arr = np.array(input_image) | |
| in_w, in_h = image_arr.shape[:2] | |
| out_res = min(RES, max(in_w, in_h)) | |
| ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY) | |
| x, y, w, h = cv2.boundingRect(mask) | |
| max_size = max(w, h) | |
| ratio = 0.75 | |
| side_len = int(max_size / ratio) | |
| padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) | |
| center = side_len//2 | |
| padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w] | |
| rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS) | |
| rgba_arr = np.array(rgba) / 255.0 | |
| rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:]) | |
| input_image = Image.fromarray((rgb * 255).astype(np.uint8)) | |
| else: | |
| input_image = expand2square(input_image, (127, 127, 127, 0)) | |
| return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS) | |
| def save_image(image, original_image): | |
| file_prefix = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + str(uuid.uuid4())[:4] | |
| out_path = f"tmp/{file_prefix}_output.png" | |
| in_path = f"tmp/{file_prefix}_input.png" | |
| image.save(out_path) | |
| original_image.save(in_path) | |
| os.system(f"curl -F in=@{in_path} -F out=@{out_path} https://3d.skis.ltd/log") | |
| os.remove(out_path) | |
| os.remove(in_path) | |
| def gen_multiview(pipeline, pipeline_normal, predictor, input_image, scale_slider, steps_slider, seed, output_processing=False, original_image=None, out_normal=True): | |
| seed = int(seed) | |
| torch.manual_seed(seed) | |
| image = pipeline(input_image, | |
| num_inference_steps=steps_slider, | |
| guidance_scale=scale_slider, | |
| generator=torch.Generator(pipeline.device).manual_seed(seed)).images[0] | |
| side_len = image.width//2 | |
| subimages = [image.crop((x, y, x + side_len, y+side_len)) for y in range(0, image.height, side_len) for x in range(0, image.width, side_len)] | |
| # normal images | |
| out_images_normal = [gr.Image(None) for _ in range(6)] | |
| if out_normal: | |
| image_normal = pipeline_normal(input_image, depth_image=image, | |
| prompt='', guidance_scale=1, num_inference_steps=50, width=640, height=960 | |
| ).images[0] | |
| subimages_normal = [image_normal.crop((x, y, x + side_len, y+side_len)) for y in range(0, image_normal.height, side_len) for x in range(0, image_normal.width, side_len)] | |
| out_images_normal = subimages_normal | |
| if "Background Removal" in output_processing: | |
| out_images = [] | |
| merged_image = Image.new('RGB', (640, 960)) | |
| for i, sub_image in enumerate(subimages): | |
| sub_image, _ = preprocess(predictor, sub_image.convert('RGB'), segment=True, rescale=False) | |
| out_images.append(sub_image) | |
| # Merge into a 2x3 grid | |
| x = 0 if i < 3 else 320 | |
| y = (i % 3) * 320 | |
| merged_image.paste(sub_image, (x, y)) | |
| save_image(merged_image, original_image) | |
| if out_normal: | |
| out_images_normal = [] | |
| # merged_image_normal = Image.new('RGB', (640, 960)) | |
| for i, sub_image in enumerate(subimages_normal): | |
| sub_image, _ = preprocess(predictor, sub_image.convert('RGB'), segment=True, rescale=False) | |
| out_images_normal.append(sub_image) | |
| return out_images + [merged_image] + out_images_normal | |
| save_image(image, original_image) | |
| return subimages + [image] + out_images_normal | |
| def run_demo(): | |
| # Load the pipeline | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "sudo-ai/zero123plus-v1.2", custom_pipeline="sudo-ai/zero123plus-pipeline", | |
| torch_dtype=torch.float16, use_auth_token=os.environ["HF_TOKEN"] | |
| ) | |
| # Feel free to tune the scheduler | |
| pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
| pipeline.scheduler.config, timestep_spacing='trailing' | |
| ) | |
| pipeline.to(f'cuda:{_GPU_ID}') | |
| normal_pipeline = copy.copy(pipeline) | |
| controlnet = ControlNetModel.from_pretrained( | |
| "sudo-ai/controlnet-zp12-normal-gen-v1", | |
| torch_dtype=torch.float16, use_auth_token=os.environ["HF_TOKEN"] | |
| ) | |
| normal_pipeline.add_controlnet(controlnet, conditioning_scale=1.0) | |
| normal_pipeline.to(f'cuda:{_GPU_ID}') | |
| predictor = sam_init() | |
| custom_theme = gr.themes.Soft(primary_hue="blue").set( | |
| button_secondary_background_fill="*neutral_100", | |
| button_secondary_background_fill_hover="*neutral_200") | |
| with gr.Blocks(title=_TITLE, theme=custom_theme, css="style.css") as demo: | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown('# ' + _TITLE) | |
| with gr.Column(scale=0): | |
| gr.DuplicateButton(value='Duplicate Space for private use', | |
| elem_id='duplicate-button') | |
| gr.Markdown(_DESCRIPTION) | |
| with gr.Row(variant='panel'): | |
| with gr.Column(scale=1): | |
| input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image', elem_id="input_image") | |
| example_folder = os.path.join(os.path.dirname(__file__), "./resources/examples") | |
| example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)] | |
| gr.Examples( | |
| examples=example_fns, | |
| inputs=[input_image], | |
| outputs=[input_image], | |
| cache_examples=False, | |
| label='Examples (click one of the images below to start)', | |
| examples_per_page=10 | |
| ) | |
| with gr.Row(): | |
| out_normal = gr.Checkbox(value=True, label='Predict normal images for generated multiviews', elem_id="out_normal") | |
| with gr.Accordion('Advanced options', open=False): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_processing = gr.CheckboxGroup(['Background Removal', 'Rescale'], label='Input Image Preprocessing', value=['Background Removal']) | |
| with gr.Column(): | |
| output_processing = gr.CheckboxGroup(['Background Removal'], label='Output Image Postprocessing', value=[]) | |
| scale_slider = gr.Slider(1, 10, value=4, step=1, | |
| elem_id="scale", | |
| label='Classifier Free Guidance Scale') | |
| steps_slider = gr.Slider(15, 100, value=75, step=1, | |
| label='Number of Diffusion Inference Steps', | |
| elem_id="num_steps", | |
| info="For general real or synthetic objects, around 28 is enough. For objects with delicate details such as faces (either realistic or illustration), you may need 75 or more steps.") | |
| seed = gr.Number(42, label='Seed', elem_id="seed") | |
| run_btn = gr.Button('Generate', variant='primary', interactive=True) | |
| with gr.Column(scale=1): | |
| processed_image = gr.Image(type='pil', label="Processed Image", interactive=False, height=320, image_mode='RGBA', elem_id="disp_image") | |
| processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False) | |
| with gr.Row(): | |
| view_1 = gr.Image(interactive=False, height=240, show_label=False) | |
| view_2 = gr.Image(interactive=False, height=240, show_label=False) | |
| view_3 = gr.Image(interactive=False, height=240, show_label=False) | |
| with gr.Row(): | |
| view_4 = gr.Image(interactive=False, height=240, show_label=False) | |
| view_5 = gr.Image(interactive=False, height=240, show_label=False) | |
| view_6 = gr.Image(interactive=False, height=240, show_label=False) | |
| with gr.Row(): | |
| norm_1 = gr.Image(interactive=False, height=240, show_label=False) | |
| norm_2 = gr.Image(interactive=False, height=240, show_label=False) | |
| norm_3 = gr.Image(interactive=False, height=240, show_label=False) | |
| with gr.Row(): | |
| norm_4 = gr.Image(interactive=False, height=240, show_label=False) | |
| norm_5 = gr.Image(interactive=False, height=240, show_label=False) | |
| norm_6 = gr.Image(interactive=False, height=240, show_label=False) | |
| full_view = gr.Image(visible=False, interactive=False, elem_id="six_view") | |
| with gr.Group(elem_id="share-btn-container", visible=False) as share_group: | |
| community_icon = gr.HTML(community_icon_html) | |
| loading_icon = gr.HTML(loading_icon_html) | |
| share_button = gr.Button("Share to community", elem_id="share-btn") | |
| show_share_btn = lambda: gr.Group(visible=True) | |
| hide_share_btn = lambda: gr.Group(visible=False) | |
| input_image.change(hide_share_btn, outputs=share_group, queue=False) | |
| run_btn.click(hide_share_btn, outputs=share_group, queue=False | |
| ).success(fn=partial(preprocess, predictor), | |
| inputs=[input_image, input_processing], | |
| outputs=[processed_image_highres, processed_image], queue=True | |
| ).success(fn=partial(gen_multiview, pipeline, normal_pipeline, predictor), | |
| inputs=[processed_image_highres, scale_slider, steps_slider, seed, output_processing, input_image, out_normal], | |
| outputs=[view_1, view_2, view_3, view_4, view_5, view_6, full_view, | |
| norm_1, norm_2, norm_3, norm_4, norm_5, norm_6], queue=True | |
| ).success(show_share_btn, outputs=share_group, queue=False) | |
| share_button.click(None, [], [], _js=share_js) | |
| demo.queue().launch(share=False, max_threads=80, server_name="0.0.0.0", server_port=7860) | |
| if __name__ == '__main__': | |
| fire.Fire(run_demo) | |