Upload 4 files
Browse files- app.py +651 -0
- quant.py +195 -0
- requirements.txt +19 -0
- utils.py +531 -0
app.py
ADDED
|
@@ -0,0 +1,651 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
try:
|
| 2 |
+
import spaces
|
| 3 |
+
GPU = spaces.GPU
|
| 4 |
+
print("spaces GPU is available")
|
| 5 |
+
except ImportError:
|
| 6 |
+
def GPU(func):
|
| 7 |
+
return func
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
import subprocess
|
| 11 |
+
|
| 12 |
+
# def install_cuda_toolkit():
|
| 13 |
+
# # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
|
| 14 |
+
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
|
| 15 |
+
# CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
| 16 |
+
# subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
|
| 17 |
+
# subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
|
| 18 |
+
# subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
|
| 19 |
+
|
| 20 |
+
# os.environ["CUDA_HOME"] = "/usr/local/cuda"
|
| 21 |
+
# os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
|
| 22 |
+
# os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
|
| 23 |
+
# os.environ["CUDA_HOME"],
|
| 24 |
+
# "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
|
| 25 |
+
# )
|
| 26 |
+
# # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
|
| 27 |
+
# os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
| 28 |
+
|
| 29 |
+
# print("Successfully installed CUDA toolkit at: ", os.environ["CUDA_HOME"])
|
| 30 |
+
|
| 31 |
+
# subprocess.call('rm /usr/bin/gcc', shell=True)
|
| 32 |
+
# subprocess.call('rm /usr/bin/g++', shell=True)
|
| 33 |
+
# subprocess.call('rm /usr/local/cuda/bin/gcc', shell=True)
|
| 34 |
+
# subprocess.call('rm /usr/local/cuda/bin/g++', shell=True)
|
| 35 |
+
|
| 36 |
+
# subprocess.call('ln -s /usr/bin/gcc-11 /usr/bin/gcc', shell=True)
|
| 37 |
+
# subprocess.call('ln -s /usr/bin/g++-11 /usr/bin/g++', shell=True)
|
| 38 |
+
|
| 39 |
+
# subprocess.call('ln -s /usr/bin/gcc-11 /usr/local/cuda/bin/gcc', shell=True)
|
| 40 |
+
# subprocess.call('ln -s /usr/bin/g++-11 /usr/local/cuda/bin/g++', shell=True)
|
| 41 |
+
|
| 42 |
+
# subprocess.call('gcc --version', shell=True)
|
| 43 |
+
# subprocess.call('g++ --version', shell=True)
|
| 44 |
+
|
| 45 |
+
# install_cuda_toolkit()
|
| 46 |
+
|
| 47 |
+
# subprocess.run('pip install git+https://github.com/nerfstudio-project/gsplat.git@32f2a54d21c7ecb135320bb02b136b7407ae5712 --no-build-isolation --use-pep517', env={'CUDA_HOME': "/usr/local/cuda", "TORCH_CUDA_ARCH_LIST": "8.0;8.6"}, shell=True)
|
| 48 |
+
|
| 49 |
+
from flask import Flask, jsonify, request, send_file, render_template
|
| 50 |
+
import base64
|
| 51 |
+
import io
|
| 52 |
+
from PIL import Image
|
| 53 |
+
import torch
|
| 54 |
+
import numpy as np
|
| 55 |
+
import os
|
| 56 |
+
import argparse
|
| 57 |
+
import imageio
|
| 58 |
+
import json
|
| 59 |
+
|
| 60 |
+
import time
|
| 61 |
+
import threading
|
| 62 |
+
|
| 63 |
+
from concurrency_manager import ConcurrencyManager
|
| 64 |
+
|
| 65 |
+
from huggingface_hub import hf_hub_download
|
| 66 |
+
|
| 67 |
+
import einops
|
| 68 |
+
import torch
|
| 69 |
+
import torch.nn as nn
|
| 70 |
+
import torch.nn.functional as F
|
| 71 |
+
import numpy as np
|
| 72 |
+
|
| 73 |
+
import imageio
|
| 74 |
+
|
| 75 |
+
from models import *
|
| 76 |
+
from utils import *
|
| 77 |
+
|
| 78 |
+
from transformers import T5TokenizerFast, UMT5EncoderModel
|
| 79 |
+
|
| 80 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 81 |
+
|
| 82 |
+
class MyFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
|
| 83 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
| 84 |
+
if schedule_timesteps is None:
|
| 85 |
+
schedule_timesteps = self.timesteps
|
| 86 |
+
|
| 87 |
+
return torch.argmin(
|
| 88 |
+
(timestep - schedule_timesteps.to(timestep.device)).abs(), dim=0).item()
|
| 89 |
+
|
| 90 |
+
class GenerationSystem(nn.Module):
|
| 91 |
+
def __init__(self, ckpt_path=None, device="cuda:0", offload_t5=False, offload_vae=False):
|
| 92 |
+
super().__init__()
|
| 93 |
+
self.device = device
|
| 94 |
+
self.offload_t5 = offload_t5
|
| 95 |
+
self.offload_vae = offload_vae
|
| 96 |
+
|
| 97 |
+
self.latent_dim = 48
|
| 98 |
+
self.temporal_downsample_factor = 4
|
| 99 |
+
self.spatial_downsample_factor = 16
|
| 100 |
+
|
| 101 |
+
self.feat_dim = 1024
|
| 102 |
+
|
| 103 |
+
self.latent_patch_size = 2
|
| 104 |
+
|
| 105 |
+
self.denoising_steps = [0, 250, 500, 750]
|
| 106 |
+
|
| 107 |
+
model_id = "Wan-AI/Wan2.2-TI2V-5B-Diffusers"
|
| 108 |
+
|
| 109 |
+
self.vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float).eval()
|
| 110 |
+
|
| 111 |
+
from models.autoencoder_kl_wan import WanCausalConv3d
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
for name, module in self.vae.named_modules():
|
| 114 |
+
if isinstance(module, WanCausalConv3d):
|
| 115 |
+
time_pad = module._padding[4]
|
| 116 |
+
module.padding = (0, module._padding[2], module._padding[0])
|
| 117 |
+
module._padding = (0, 0, 0, 0, 0, 0)
|
| 118 |
+
module.weight = torch.nn.Parameter(module.weight[:, :, time_pad:].clone())
|
| 119 |
+
|
| 120 |
+
self.vae.requires_grad_(False)
|
| 121 |
+
|
| 122 |
+
self.register_buffer('latents_mean', torch.tensor(self.vae.config.latents_mean).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
|
| 123 |
+
self.register_buffer('latents_std', torch.tensor(self.vae.config.latents_std).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
|
| 124 |
+
|
| 125 |
+
self.latent_scale_fn = lambda x: (x - self.latents_mean) / self.latents_std
|
| 126 |
+
self.latent_unscale_fn = lambda x: x * self.latents_std + self.latents_mean
|
| 127 |
+
|
| 128 |
+
self.tokenizer = T5TokenizerFast.from_pretrained(model_id, subfolder="tokenizer")
|
| 129 |
+
|
| 130 |
+
self.text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float32).eval().requires_grad_(False).to(self.device if not self.offload_t5 else "cpu")
|
| 131 |
+
|
| 132 |
+
self.transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float32).train().requires_grad_(False)
|
| 133 |
+
|
| 134 |
+
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, 6 + self.latent_dim)))
|
| 135 |
+
# self.transformer.rope.freqs_f[:] = self.transformer.rope.freqs_f[:1]
|
| 136 |
+
|
| 137 |
+
weight = self.transformer.proj_out.weight.reshape(self.latent_patch_size ** 2, self.latent_dim, self.transformer.proj_out.weight.shape[1])
|
| 138 |
+
bias = self.transformer.proj_out.bias.reshape(self.latent_patch_size ** 2, self.latent_dim)
|
| 139 |
+
|
| 140 |
+
extra_weight = torch.randn(self.latent_patch_size ** 2, self.feat_dim, self.transformer.proj_out.weight.shape[1]) * 0.02
|
| 141 |
+
extra_bias = torch.zeros(self.latent_patch_size ** 2, self.feat_dim)
|
| 142 |
+
|
| 143 |
+
self.transformer.proj_out.weight = nn.Parameter(torch.cat([weight, extra_weight], dim=1).flatten(0, 1).detach().clone())
|
| 144 |
+
self.transformer.proj_out.bias = nn.Parameter(torch.cat([bias, extra_bias], dim=1).flatten(0, 1).detach().clone())
|
| 145 |
+
|
| 146 |
+
self.recon_decoder = WANDecoderPixelAligned3DGSReconstructionModel(self.vae, self.feat_dim, use_render_checkpointing=True, use_network_checkpointing=False).train().requires_grad_(False).to(self.device)
|
| 147 |
+
|
| 148 |
+
self.scheduler = MyFlowMatchEulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", shift=3)
|
| 149 |
+
|
| 150 |
+
self.register_buffer('timesteps', self.scheduler.timesteps.clone().to(self.device))
|
| 151 |
+
|
| 152 |
+
self.transformer.disable_gradient_checkpointing()
|
| 153 |
+
self.transformer.gradient_checkpointing = False
|
| 154 |
+
|
| 155 |
+
self.add_feedback_for_transformer()
|
| 156 |
+
|
| 157 |
+
if ckpt_path is not None:
|
| 158 |
+
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False)
|
| 159 |
+
self.transformer.load_state_dict(state_dict["transformer"])
|
| 160 |
+
self.recon_decoder.load_state_dict(state_dict["recon_decoder"])
|
| 161 |
+
print(f"Loaded {ckpt_path}.")
|
| 162 |
+
|
| 163 |
+
from quant import FluxFp8GeMMProcessor
|
| 164 |
+
|
| 165 |
+
FluxFp8GeMMProcessor(self.transformer)
|
| 166 |
+
|
| 167 |
+
del self.vae.post_quant_conv, self.vae.decoder
|
| 168 |
+
self.vae.to(self.device if not self.offload_vae else "cpu")
|
| 169 |
+
|
| 170 |
+
self.transformer.to(self.device)
|
| 171 |
+
|
| 172 |
+
def add_feedback_for_transformer(self):
|
| 173 |
+
self.use_feedback = True
|
| 174 |
+
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, self.feat_dim + self.latent_dim)))
|
| 175 |
+
|
| 176 |
+
def encode_text(self, texts):
|
| 177 |
+
max_sequence_length = 512
|
| 178 |
+
|
| 179 |
+
text_inputs = self.tokenizer(
|
| 180 |
+
texts,
|
| 181 |
+
padding="max_length",
|
| 182 |
+
max_length=max_sequence_length,
|
| 183 |
+
truncation=True,
|
| 184 |
+
add_special_tokens=True,
|
| 185 |
+
return_attention_mask=True,
|
| 186 |
+
return_tensors="pt",
|
| 187 |
+
)
|
| 188 |
+
if getattr(self, "offload_t5", False):
|
| 189 |
+
text_input_ids = text_inputs.input_ids.to("cpu")
|
| 190 |
+
mask = text_inputs.attention_mask.to("cpu")
|
| 191 |
+
else:
|
| 192 |
+
text_input_ids = text_inputs.input_ids.to(self.device)
|
| 193 |
+
mask = text_inputs.attention_mask.to(self.device)
|
| 194 |
+
seq_lens = mask.gt(0).sum(dim=1).long()
|
| 195 |
+
|
| 196 |
+
if getattr(self, "offload_t5", False):
|
| 197 |
+
with torch.no_grad():
|
| 198 |
+
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state.to(self.device)
|
| 199 |
+
else:
|
| 200 |
+
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state
|
| 201 |
+
text_embeds = [u[:v] for u, v in zip(text_embeds, seq_lens)]
|
| 202 |
+
text_embeds = torch.stack(
|
| 203 |
+
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in text_embeds], dim=0
|
| 204 |
+
)
|
| 205 |
+
return text_embeds.float()
|
| 206 |
+
|
| 207 |
+
def forward_generator(self, noisy_latents, raymaps, condition_latents, t, text_embeds, cameras, render_cameras, image_height, image_width, need_3d_mode=True):
|
| 208 |
+
|
| 209 |
+
out = self.transformer(
|
| 210 |
+
hidden_states=torch.cat([noisy_latents, raymaps, condition_latents], dim=1),
|
| 211 |
+
timestep=t,
|
| 212 |
+
encoder_hidden_states=text_embeds,
|
| 213 |
+
return_dict=False,
|
| 214 |
+
)[0]
|
| 215 |
+
|
| 216 |
+
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
|
| 217 |
+
|
| 218 |
+
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
|
| 219 |
+
latents_pred_2d = noisy_latents - sigma * v_pred
|
| 220 |
+
|
| 221 |
+
if need_3d_mode:
|
| 222 |
+
scene_params = self.recon_decoder(
|
| 223 |
+
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
|
| 224 |
+
einops.rearrange(self.latent_unscale_fn(latents_pred_2d.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
|
| 225 |
+
cameras
|
| 226 |
+
).flatten(1, -2)
|
| 227 |
+
|
| 228 |
+
images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
|
| 229 |
+
|
| 230 |
+
latents_pred_3d = einops.rearrange(self.latent_scale_fn(self.vae.encode(
|
| 231 |
+
einops.rearrange(images_pred, 'B T C H W -> (B T) C H W', T=images_pred.shape[1]).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
|
| 232 |
+
).latent_dist.sample().to(self.device)).squeeze(2), '(B T) C H W -> B C T H W', T=images_pred.shape[1]).to(noisy_latents.dtype)
|
| 233 |
+
|
| 234 |
+
return {
|
| 235 |
+
'2d': latents_pred_2d,
|
| 236 |
+
'3d': latents_pred_3d if need_3d_mode else None,
|
| 237 |
+
'rgb_3d': images_pred if need_3d_mode else None,
|
| 238 |
+
'scene': scene_params if need_3d_mode else None,
|
| 239 |
+
'feat': feats
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
@torch.no_grad()
|
| 243 |
+
@torch.amp.autocast(dtype=torch.bfloat16, device_type="cuda")
|
| 244 |
+
def generate(self, cameras, n_frame, image=None, text="", image_index=0, image_height=480, image_width=704, video_output_path=None):
|
| 245 |
+
with torch.no_grad():
|
| 246 |
+
batch_size = 1
|
| 247 |
+
|
| 248 |
+
cameras = cameras.to(self.device).unsqueeze(0)
|
| 249 |
+
|
| 250 |
+
if cameras.shape[1] != n_frame:
|
| 251 |
+
render_cameras = cameras.clone()
|
| 252 |
+
cameras = sample_from_dense_cameras(cameras.squeeze(0), torch.linspace(0, 1, n_frame, device=self.device)).unsqueeze(0)
|
| 253 |
+
else:
|
| 254 |
+
render_cameras = cameras
|
| 255 |
+
|
| 256 |
+
cameras, ref_w2c, T_norm = normalize_cameras(cameras, return_meta=True, n_frame=None)
|
| 257 |
+
|
| 258 |
+
render_cameras = normalize_cameras(render_cameras, ref_w2c=ref_w2c, T_norm=T_norm, n_frame=None)
|
| 259 |
+
|
| 260 |
+
text = "[Static] " + text
|
| 261 |
+
|
| 262 |
+
text_embeds = self.encode_text([text])
|
| 263 |
+
# neg_text_embeds = self.encode_text([""]).repeat(batch_size, 1, 1)
|
| 264 |
+
|
| 265 |
+
masks = torch.zeros(batch_size, n_frame, device=self.device)
|
| 266 |
+
|
| 267 |
+
condition_latents = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
|
| 268 |
+
|
| 269 |
+
if image is not None:
|
| 270 |
+
image = image.to(self.device)
|
| 271 |
+
|
| 272 |
+
latent = self.latent_scale_fn(self.vae.encode(
|
| 273 |
+
image.unsqueeze(0).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
|
| 274 |
+
).latent_dist.sample().to(self.device)).squeeze(2)
|
| 275 |
+
|
| 276 |
+
masks[:, image_index] = 1
|
| 277 |
+
condition_latents[:, :, image_index] = latent
|
| 278 |
+
|
| 279 |
+
raymaps = create_raymaps(cameras, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor)
|
| 280 |
+
raymaps = einops.rearrange(raymaps, 'B T H W C -> B C T H W', T=n_frame)
|
| 281 |
+
|
| 282 |
+
noise = torch.randn(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
|
| 283 |
+
|
| 284 |
+
noisy_latents = noise
|
| 285 |
+
|
| 286 |
+
torch.cuda.empty_cache()
|
| 287 |
+
|
| 288 |
+
if self.use_feedback:
|
| 289 |
+
prev_latents_pred = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
|
| 290 |
+
|
| 291 |
+
prev_feats = torch.zeros(batch_size, self.feat_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
|
| 292 |
+
|
| 293 |
+
for i in range(len(self.denoising_steps)):
|
| 294 |
+
t_ids = torch.full((noisy_latents.shape[0],), self.denoising_steps[i], device=self.device)
|
| 295 |
+
|
| 296 |
+
t = self.timesteps[t_ids]
|
| 297 |
+
|
| 298 |
+
if self.use_feedback:
|
| 299 |
+
_condition_latents = torch.cat([condition_latents, prev_feats, prev_latents_pred], dim=1)
|
| 300 |
+
else:
|
| 301 |
+
_condition_latents = condition_latents
|
| 302 |
+
|
| 303 |
+
if i < len(self.denoising_steps) - 1:
|
| 304 |
+
out = self.forward_generator(noisy_latents, raymaps, _condition_latents, t, text_embeds, cameras, cameras, image_height, image_width, need_3d_mode=True)
|
| 305 |
+
|
| 306 |
+
latents_pred = out["3d"]
|
| 307 |
+
|
| 308 |
+
if self.use_feedback:
|
| 309 |
+
prev_latents_pred = latents_pred
|
| 310 |
+
prev_feats = out['feat']
|
| 311 |
+
|
| 312 |
+
noisy_latents = self.scheduler.scale_noise(latents_pred, self.timesteps[torch.full((noisy_latents.shape[0],), self.denoising_steps[i + 1], device=self.device)], torch.randn_like(noise))
|
| 313 |
+
|
| 314 |
+
else:
|
| 315 |
+
out = self.transformer(
|
| 316 |
+
hidden_states=torch.cat([noisy_latents, raymaps, _condition_latents], dim=1),
|
| 317 |
+
timestep=t,
|
| 318 |
+
encoder_hidden_states=text_embeds,
|
| 319 |
+
return_dict=False,
|
| 320 |
+
)[0]
|
| 321 |
+
|
| 322 |
+
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
|
| 323 |
+
|
| 324 |
+
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
|
| 325 |
+
latents_pred = noisy_latents - sigma * v_pred
|
| 326 |
+
|
| 327 |
+
scene_params = self.recon_decoder(
|
| 328 |
+
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
|
| 329 |
+
einops.rearrange(self.latent_unscale_fn(latents_pred.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
|
| 330 |
+
cameras
|
| 331 |
+
).flatten(1, -2)
|
| 332 |
+
|
| 333 |
+
if video_output_path is not None:
|
| 334 |
+
interpolated_images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
|
| 335 |
+
|
| 336 |
+
interpolated_images_pred = einops.rearrange(interpolated_images_pred[0].clamp(-1, 1).add(1).div(2), 'T C H W -> T H W C')
|
| 337 |
+
|
| 338 |
+
interpolated_images_pred = [torch.cat([img], dim=1).detach().cpu().mul(255).numpy().astype(np.uint8) for i, img in enumerate(interpolated_images_pred.unbind(0))]
|
| 339 |
+
|
| 340 |
+
imageio.mimwrite(video_output_path, interpolated_images_pred, fps=15, quality=8, macro_block_size=1)
|
| 341 |
+
|
| 342 |
+
scene_params = scene_params[0]
|
| 343 |
+
|
| 344 |
+
scene_params = scene_params.detach().cpu()
|
| 345 |
+
|
| 346 |
+
return scene_params, ref_w2c, T_norm
|
| 347 |
+
|
| 348 |
+
if __name__ == "__main__":
|
| 349 |
+
parser = argparse.ArgumentParser()
|
| 350 |
+
parser.add_argument('--port', type=int, default=7860)
|
| 351 |
+
parser.add_argument("--ckpt", default=None)
|
| 352 |
+
parser.add_argument("--gpu", type=int, default=0)
|
| 353 |
+
parser.add_argument("--cache_dir", type=str, default="./tmpfiles")
|
| 354 |
+
parser.add_argument("--offload_t5", type=bool, default=False)
|
| 355 |
+
parser.add_argument("--max_concurrent", type=int, default=1, help="Maximum concurrent generation tasks")
|
| 356 |
+
args, _ = parser.parse_known_args()
|
| 357 |
+
|
| 358 |
+
# Ensure model.ckpt exists, download if not present
|
| 359 |
+
if args.ckpt is None:
|
| 360 |
+
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
| 361 |
+
ckpt_path = os.path.join(HUGGINGFACE_HUB_CACHE, "models--imlixinyang--FlashWorld", "snapshots", "6a8e88c6f88678ac098e4c82675f0aee555d6e5d", "model.ckpt")
|
| 362 |
+
if not os.path.exists(ckpt_path):
|
| 363 |
+
hf_hub_download(repo_id="imlixinyang/FlashWorld", filename="model.ckpt", local_dir_use_symlinks=False)
|
| 364 |
+
else:
|
| 365 |
+
ckpt_path = args.ckpt
|
| 366 |
+
|
| 367 |
+
app = Flask(__name__)
|
| 368 |
+
|
| 369 |
+
# 初始化GenerationSystem
|
| 370 |
+
device = f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu"
|
| 371 |
+
generation_system = GenerationSystem(ckpt_path=ckpt_path, device=device)
|
| 372 |
+
|
| 373 |
+
# 初始化并发管理器
|
| 374 |
+
concurrency_manager = ConcurrencyManager(max_concurrent=args.max_concurrent)
|
| 375 |
+
|
| 376 |
+
@app.after_request
|
| 377 |
+
def after_request(response):
|
| 378 |
+
response.headers.add('Access-Control-Allow-Origin', '*')
|
| 379 |
+
response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization')
|
| 380 |
+
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
|
| 381 |
+
return response
|
| 382 |
+
|
| 383 |
+
@GPU
|
| 384 |
+
def generate_wrapper(cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path=None):
|
| 385 |
+
"""生成函数的包装器,用于并发控制"""
|
| 386 |
+
return generation_system.generate(cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path)
|
| 387 |
+
|
| 388 |
+
def job_generate(file_id, cache_dir, payload):
|
| 389 |
+
"""工作线程执行的生成任务:负责生成并落盘,返回可下载信息"""
|
| 390 |
+
# 解包参数
|
| 391 |
+
cameras = payload["cameras"]
|
| 392 |
+
n_frame = payload["n_frame"]
|
| 393 |
+
image = payload["image"]
|
| 394 |
+
text_prompt = payload["text_prompt"]
|
| 395 |
+
image_index = payload["image_index"]
|
| 396 |
+
image_height = payload["image_height"]
|
| 397 |
+
image_width = payload["image_width"]
|
| 398 |
+
data = payload["raw_request"]
|
| 399 |
+
|
| 400 |
+
# 执行生成
|
| 401 |
+
scene_params, ref_w2c, T_norm = generation_system.generate(
|
| 402 |
+
cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path=None
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
# 保存请求元数据
|
| 406 |
+
with open(os.path.join(cache_dir, f'{file_id}.json'), 'w') as f:
|
| 407 |
+
json.dump(data, f)
|
| 408 |
+
|
| 409 |
+
# 导出PLY文件
|
| 410 |
+
splat_path = os.path.join(cache_dir, f'{file_id}.ply')
|
| 411 |
+
export_ply_for_gaussians(splat_path, scene_params, opacity_threshold=0.001, T_norm=T_norm)
|
| 412 |
+
|
| 413 |
+
file_size = os.path.getsize(splat_path) if os.path.exists(splat_path) else 0
|
| 414 |
+
|
| 415 |
+
return {
|
| 416 |
+
'file_id': file_id,
|
| 417 |
+
'file_path': splat_path,
|
| 418 |
+
'file_size': file_size,
|
| 419 |
+
'download_url': f'/download/{file_id}'
|
| 420 |
+
}
|
| 421 |
+
|
| 422 |
+
@app.route('/generate', methods=['POST', 'OPTIONS'])
|
| 423 |
+
def generate():
|
| 424 |
+
# Handle preflight request
|
| 425 |
+
if request.method == 'OPTIONS':
|
| 426 |
+
return jsonify({'status': 'ok'})
|
| 427 |
+
|
| 428 |
+
try:
|
| 429 |
+
data = request.get_json(force=True)
|
| 430 |
+
|
| 431 |
+
image_prompt = data.get('image_prompt', None)
|
| 432 |
+
text_prompt = data.get('text_prompt', "")
|
| 433 |
+
cameras = data.get('cameras')
|
| 434 |
+
resolution = data.get('resolution')
|
| 435 |
+
image_index = data.get('image_index', 0)
|
| 436 |
+
|
| 437 |
+
n_frame, image_height, image_width = resolution
|
| 438 |
+
|
| 439 |
+
if not image_prompt and text_prompt == "":
|
| 440 |
+
return jsonify({'error': 'No Prompts provided'}), 400
|
| 441 |
+
|
| 442 |
+
# 处理图像
|
| 443 |
+
if image_prompt:
|
| 444 |
+
# image_prompt可以是路径和base64
|
| 445 |
+
if os.path.exists(image_prompt):
|
| 446 |
+
image_prompt = Image.open(image_prompt)
|
| 447 |
+
else:
|
| 448 |
+
# image_prompt 可能是 "data:image/png;base64,...."
|
| 449 |
+
if ',' in image_prompt:
|
| 450 |
+
image_prompt = image_prompt.split(',', 1)[1]
|
| 451 |
+
|
| 452 |
+
try:
|
| 453 |
+
image_bytes = base64.b64decode(image_prompt)
|
| 454 |
+
image_prompt = Image.open(io.BytesIO(image_bytes))
|
| 455 |
+
except Exception as img_e:
|
| 456 |
+
return jsonify({'error': f'Image decode error: {str(img_e)}'}), 400
|
| 457 |
+
|
| 458 |
+
image = image_prompt.convert('RGB')
|
| 459 |
+
|
| 460 |
+
w, h = image.size
|
| 461 |
+
|
| 462 |
+
# center crop
|
| 463 |
+
if image_height / h > image_width / w:
|
| 464 |
+
scale = image_height / h
|
| 465 |
+
else:
|
| 466 |
+
scale = image_width / w
|
| 467 |
+
|
| 468 |
+
new_h = int(image_height / scale)
|
| 469 |
+
new_w = int(image_width / scale)
|
| 470 |
+
|
| 471 |
+
image = image.crop(((w - new_w) // 2, (h - new_h) // 2,
|
| 472 |
+
new_w + (w - new_w) // 2, new_h + (h - new_h) // 2)).resize((image_width, image_height))
|
| 473 |
+
|
| 474 |
+
for camera in cameras:
|
| 475 |
+
camera['fx'] = camera['fx'] * scale
|
| 476 |
+
camera['fy'] = camera['fy'] * scale
|
| 477 |
+
camera['cx'] = (camera['cx'] - (w - new_w) // 2) * scale
|
| 478 |
+
camera['cy'] = (camera['cy'] - (h - new_h) // 2) * scale
|
| 479 |
+
|
| 480 |
+
image = torch.from_numpy(np.array(image)).float().permute(2, 0, 1) / 255.0 * 2 - 1
|
| 481 |
+
else:
|
| 482 |
+
image = None
|
| 483 |
+
|
| 484 |
+
cameras = torch.stack([
|
| 485 |
+
torch.from_numpy(np.array([camera['quaternion'][0], camera['quaternion'][1], camera['quaternion'][2], camera['quaternion'][3], camera['position'][0], camera['position'][1], camera['position'][2], camera['fx'] / image_width, camera['fy'] / image_height, camera['cx'] / image_width, camera['cy'] / image_height], dtype=np.float32))
|
| 486 |
+
for camera in cameras
|
| 487 |
+
], dim=0)
|
| 488 |
+
|
| 489 |
+
file_id = str(int(time.time() * 1000))
|
| 490 |
+
|
| 491 |
+
# 组装任务参数,推迟执行与落盘到工作线程中
|
| 492 |
+
payload = {
|
| 493 |
+
'cameras': cameras,
|
| 494 |
+
'n_frame': n_frame,
|
| 495 |
+
'image': image,
|
| 496 |
+
'text_prompt': text_prompt,
|
| 497 |
+
'image_index': image_index,
|
| 498 |
+
'image_height': image_height,
|
| 499 |
+
'image_width': image_width,
|
| 500 |
+
'raw_request': data,
|
| 501 |
+
}
|
| 502 |
+
|
| 503 |
+
# 提交任务到并发管理器(异步)
|
| 504 |
+
task_id = concurrency_manager.submit_task(
|
| 505 |
+
job_generate, file_id, args.cache_dir, payload
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
# 提交后立即返回队列信息
|
| 509 |
+
queue_status = concurrency_manager.get_queue_status()
|
| 510 |
+
queued_tasks = queue_status.get('queued_tasks', [])
|
| 511 |
+
try:
|
| 512 |
+
queue_position = queued_tasks.index(task_id) + 1
|
| 513 |
+
except ValueError:
|
| 514 |
+
# 如果任务已被工作线程立即领取,则认为已开始执行,位置为 0
|
| 515 |
+
queue_position = 0
|
| 516 |
+
|
| 517 |
+
return jsonify({
|
| 518 |
+
'success': True,
|
| 519 |
+
'task_id': task_id,
|
| 520 |
+
'file_id': file_id,
|
| 521 |
+
'queue': {
|
| 522 |
+
'queued_count': queue_status.get('queued_count', 0),
|
| 523 |
+
'running_count': queue_status.get('running_count', 0),
|
| 524 |
+
'position': queue_position
|
| 525 |
+
}
|
| 526 |
+
}), 202
|
| 527 |
+
|
| 528 |
+
except Exception as e:
|
| 529 |
+
return jsonify({'error': f'Server error: {str(e)}'}), 500
|
| 530 |
+
|
| 531 |
+
@app.route('/download/<file_id>', methods=['GET'])
|
| 532 |
+
def download_file(file_id):
|
| 533 |
+
"""下载生成的PLY文件"""
|
| 534 |
+
file_path = os.path.join(args.cache_dir, f'{file_id}.ply')
|
| 535 |
+
|
| 536 |
+
if not os.path.exists(file_path):
|
| 537 |
+
return jsonify({'error': 'File not found'}), 404
|
| 538 |
+
|
| 539 |
+
return send_file(file_path, as_attachment=True, download_name=f'{file_id}.ply')
|
| 540 |
+
|
| 541 |
+
@app.route('/delete/<file_id>', methods=['DELETE', 'POST', 'OPTIONS'])
|
| 542 |
+
def delete_file_endpoint(file_id):
|
| 543 |
+
"""删除生成的文件及其元数据(由前端在下载完成后调用)"""
|
| 544 |
+
# CORS preflight
|
| 545 |
+
if request.method == 'OPTIONS':
|
| 546 |
+
return jsonify({'status': 'ok'})
|
| 547 |
+
|
| 548 |
+
try:
|
| 549 |
+
ply_path = os.path.join(args.cache_dir, f'{file_id}.ply')
|
| 550 |
+
json_path = os.path.join(args.cache_dir, f'{file_id}.json')
|
| 551 |
+
deleted = []
|
| 552 |
+
for path in [ply_path, json_path]:
|
| 553 |
+
if os.path.exists(path):
|
| 554 |
+
os.remove(path)
|
| 555 |
+
deleted.append(os.path.basename(path))
|
| 556 |
+
return jsonify({'success': True, 'deleted': deleted})
|
| 557 |
+
except Exception as e:
|
| 558 |
+
return jsonify({'success': False, 'error': str(e)}), 500
|
| 559 |
+
|
| 560 |
+
@app.route('/status', methods=['GET'])
|
| 561 |
+
def get_status():
|
| 562 |
+
"""获取系统状态和队列信息"""
|
| 563 |
+
try:
|
| 564 |
+
queue_status = concurrency_manager.get_queue_status()
|
| 565 |
+
return jsonify({
|
| 566 |
+
'success': True,
|
| 567 |
+
'status': queue_status,
|
| 568 |
+
'timestamp': time.time()
|
| 569 |
+
})
|
| 570 |
+
except Exception as e:
|
| 571 |
+
return jsonify({'error': f'Failed to get status: {str(e)}'}), 500
|
| 572 |
+
|
| 573 |
+
@app.route('/task/<task_id>', methods=['GET'])
|
| 574 |
+
def get_task_status(task_id):
|
| 575 |
+
"""获取特定任务的状态(包含排队位置和完成后的文件信息)"""
|
| 576 |
+
try:
|
| 577 |
+
task = concurrency_manager.get_task_status(task_id)
|
| 578 |
+
if not task:
|
| 579 |
+
return jsonify({'error': 'Task not found'}), 404
|
| 580 |
+
|
| 581 |
+
queue_status = concurrency_manager.get_queue_status()
|
| 582 |
+
queued_tasks = queue_status.get('queued_tasks', [])
|
| 583 |
+
try:
|
| 584 |
+
queue_position = queued_tasks.index(task_id) + 1
|
| 585 |
+
except ValueError:
|
| 586 |
+
queue_position = 0
|
| 587 |
+
|
| 588 |
+
resp = {
|
| 589 |
+
'success': True,
|
| 590 |
+
'task_id': task_id,
|
| 591 |
+
'status': task.status.value,
|
| 592 |
+
'created_at': task.created_at,
|
| 593 |
+
'started_at': task.started_at,
|
| 594 |
+
'completed_at': task.completed_at,
|
| 595 |
+
'error': task.error,
|
| 596 |
+
'queue': {
|
| 597 |
+
'queued_count': queue_status.get('queued_count', 0),
|
| 598 |
+
'running_count': queue_status.get('running_count', 0),
|
| 599 |
+
'position': queue_position
|
| 600 |
+
}
|
| 601 |
+
}
|
| 602 |
+
|
| 603 |
+
if task.status.value == 'completed' and isinstance(task.result, dict):
|
| 604 |
+
resp.update({
|
| 605 |
+
'file_id': task.result.get('file_id'),
|
| 606 |
+
'file_path': task.result.get('file_path'),
|
| 607 |
+
'file_size': task.result.get('file_size'),
|
| 608 |
+
'download_url': task.result.get('download_url'),
|
| 609 |
+
'generation_time': (task.completed_at - task.started_at)
|
| 610 |
+
})
|
| 611 |
+
|
| 612 |
+
# 更新task状态
|
| 613 |
+
|
| 614 |
+
return jsonify(resp)
|
| 615 |
+
except Exception as e:
|
| 616 |
+
return jsonify({'error': f'Failed to get task status: {str(e)}'}), 500
|
| 617 |
+
|
| 618 |
+
@app.route("/")
|
| 619 |
+
def index():
|
| 620 |
+
return send_file("index.html")
|
| 621 |
+
|
| 622 |
+
os.makedirs(args.cache_dir, exist_ok=True)
|
| 623 |
+
|
| 624 |
+
# 后台定时清理:删除超过30分钟未访问/修改的缓存文件
|
| 625 |
+
def cleanup_worker(cache_dir: str, max_age_seconds: int = 1800, interval_seconds: int = 300):
|
| 626 |
+
while True:
|
| 627 |
+
try:
|
| 628 |
+
now = time.time()
|
| 629 |
+
for name in os.listdir(cache_dir):
|
| 630 |
+
# 只清理与任务相关的 .ply/.json 文件
|
| 631 |
+
if not (name.endswith('.ply') or name.endswith('.json')):
|
| 632 |
+
continue
|
| 633 |
+
path = os.path.join(cache_dir, name)
|
| 634 |
+
try:
|
| 635 |
+
mtime = os.path.getmtime(path)
|
| 636 |
+
if now - mtime > max_age_seconds:
|
| 637 |
+
os.remove(path)
|
| 638 |
+
except FileNotFoundError:
|
| 639 |
+
pass
|
| 640 |
+
except Exception:
|
| 641 |
+
# 忽略单个文件的异常,继续清理
|
| 642 |
+
pass
|
| 643 |
+
except Exception:
|
| 644 |
+
# 防止线程因异常退出
|
| 645 |
+
pass
|
| 646 |
+
time.sleep(interval_seconds)
|
| 647 |
+
|
| 648 |
+
cleaner_thread = threading.Thread(target=cleanup_worker, args=(args.cache_dir,), daemon=True)
|
| 649 |
+
cleaner_thread.start()
|
| 650 |
+
|
| 651 |
+
app.run(host='0.0.0.0', port=args.port)
|
quant.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
from typing import Tuple
|
| 3 |
+
import copy
|
| 4 |
+
import torch
|
| 5 |
+
import tqdm
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def cleanup_memory():
|
| 9 |
+
gc.collect()
|
| 10 |
+
torch.cuda.empty_cache()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def per_tensor_quantize(tensor: torch.Tensor) -> Tuple[torch.Tensor, float]:
|
| 14 |
+
"""Quantize a tensor using per-tensor static scaling factor.
|
| 15 |
+
Args:
|
| 16 |
+
tensor: The input tensor.
|
| 17 |
+
"""
|
| 18 |
+
finfo = torch.finfo(torch.float8_e4m3fn)
|
| 19 |
+
# Calculate the scale as dtype max divided by absmax.
|
| 20 |
+
# Since .abs() creates a new tensor, we use aminmax to get
|
| 21 |
+
# the min and max first and then calculate the absmax.
|
| 22 |
+
if tensor.numel() == 0:
|
| 23 |
+
# Deal with empty tensors (triggered by empty MoE experts)
|
| 24 |
+
min_val, max_val = (
|
| 25 |
+
torch.tensor(-16.0, dtype=tensor.dtype),
|
| 26 |
+
torch.tensor(16.0, dtype=tensor.dtype),
|
| 27 |
+
)
|
| 28 |
+
else:
|
| 29 |
+
min_val, max_val = tensor.aminmax()
|
| 30 |
+
amax = torch.maximum(min_val.abs(), max_val.abs())
|
| 31 |
+
scale = finfo.max / amax.clamp(min=1e-12)
|
| 32 |
+
# scale and clamp the tensor to bring it to
|
| 33 |
+
# the representative range of float8 data type
|
| 34 |
+
# (as default cast is unsaturated)
|
| 35 |
+
qweight = (tensor * scale).clamp(min=finfo.min, max=finfo.max)
|
| 36 |
+
# Return both float8 data and the inverse scale (as float),
|
| 37 |
+
# as both required as inputs to torch._scaled_mm
|
| 38 |
+
qweight = qweight.to(torch.float8_e4m3fn)
|
| 39 |
+
scale = scale.float().reciprocal()
|
| 40 |
+
return qweight, scale
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def static_per_tensor_quantize(tensor: torch.Tensor, inv_scale: float) -> torch.Tensor:
|
| 44 |
+
"""Quantizes a floating-point tensor to FP8 (E4M3 format) using static scaling.
|
| 45 |
+
|
| 46 |
+
Performs uniform quantization of the input tensor by:
|
| 47 |
+
1. Scaling the tensor values using the provided inverse scale factor
|
| 48 |
+
2. Clamping values to the representable range of FP8 E4M3 format
|
| 49 |
+
3. Converting to FP8 data type
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
tensor (torch.Tensor): Input tensor to be quantized (any floating-point dtype)
|
| 53 |
+
inv_scale (float): Inverse of the quantization scale factor (1/scale)
|
| 54 |
+
(Must be pre-calculated based on tensor statistics)
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
torch.Tensor: Quantized tensor in torch.float8_e4m3fn format
|
| 58 |
+
|
| 59 |
+
Note:
|
| 60 |
+
- Uses the E4M3 format (4 exponent bits, 3 mantissa bits, no infinity/nan)
|
| 61 |
+
- This is a static quantization (scale factor must be pre-determined)
|
| 62 |
+
- For dynamic quantization, see per_tensor_quantize()
|
| 63 |
+
"""
|
| 64 |
+
finfo = torch.finfo(torch.float8_e4m3fn)
|
| 65 |
+
qweight = (tensor / inv_scale).clamp(min=finfo.min, max=finfo.max)
|
| 66 |
+
return qweight.to(torch.float8_e4m3fn)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def fp8_gemm(A, A_scale, B, B_scale, bias, out_dtype, native_fp8_support=False):
|
| 70 |
+
"""Performs FP8 GEMM (General Matrix Multiplication) operation with optional native hardware support.
|
| 71 |
+
Args:
|
| 72 |
+
A (torch.Tensor): Input tensor A (FP8 or other dtype)
|
| 73 |
+
A_scale (torch.Tensor/float): Scale factor for tensor A
|
| 74 |
+
B (torch.Tensor): Input tensor B (FP8 or other dtype)
|
| 75 |
+
B_scale (torch.Tensor/float): Scale factor for tensor B
|
| 76 |
+
bias (torch.Tensor/None): Optional bias tensor
|
| 77 |
+
out_dtype (torch.dtype): Output data type
|
| 78 |
+
native_fp8_support (bool): Whether to use hardware-accelerated FP8 operations
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
torch.Tensor: Result of GEMM operation
|
| 82 |
+
"""
|
| 83 |
+
if A.numel() == 0:
|
| 84 |
+
# Deal with empty tensors (triggeted by empty MoE experts)
|
| 85 |
+
return torch.empty(size=(0, B.shape[0]), dtype=out_dtype, device=A.device)
|
| 86 |
+
|
| 87 |
+
if native_fp8_support:
|
| 88 |
+
need_reshape = A.dim() == 3
|
| 89 |
+
if need_reshape:
|
| 90 |
+
batch_size = A.shape[0]
|
| 91 |
+
A_input = A.reshape(-1, A.shape[-1])
|
| 92 |
+
else:
|
| 93 |
+
batch_size = None
|
| 94 |
+
A_input = A
|
| 95 |
+
output = torch._scaled_mm(
|
| 96 |
+
A_input,
|
| 97 |
+
B.t(),
|
| 98 |
+
out_dtype=out_dtype,
|
| 99 |
+
scale_a=A_scale,
|
| 100 |
+
scale_b=B_scale,
|
| 101 |
+
bias=bias,
|
| 102 |
+
)
|
| 103 |
+
if need_reshape:
|
| 104 |
+
output = output.reshape(
|
| 105 |
+
batch_size, output.shape[0] // batch_size, output.shape[1]
|
| 106 |
+
)
|
| 107 |
+
else:
|
| 108 |
+
output = torch.nn.functional.linear(
|
| 109 |
+
A.to(out_dtype) * A_scale,
|
| 110 |
+
B.to(out_dtype) * B_scale.to(out_dtype),
|
| 111 |
+
bias=bias,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
return output
|
| 115 |
+
|
| 116 |
+
def replace_module(model: torch.nn.Module, name: str, new_module: torch.nn.Module):
|
| 117 |
+
if "." in name:
|
| 118 |
+
parent_name = name.rsplit(".", 1)[0]
|
| 119 |
+
child_name = name[len(parent_name) + 1:]
|
| 120 |
+
parent = model.get_submodule(parent_name)
|
| 121 |
+
else:
|
| 122 |
+
parent_name = ""
|
| 123 |
+
parent = model
|
| 124 |
+
child_name = name
|
| 125 |
+
setattr(parent, child_name, new_module)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# Class responsible for quantizing weights
|
| 129 |
+
class FP8DynamicLinear(torch.nn.Module):
|
| 130 |
+
def __init__(
|
| 131 |
+
self,
|
| 132 |
+
weight: torch.Tensor,
|
| 133 |
+
weight_scale: torch.Tensor,
|
| 134 |
+
bias: torch.nn.Parameter,
|
| 135 |
+
native_fp8_support: bool = False,
|
| 136 |
+
dtype: torch.dtype = torch.bfloat16,
|
| 137 |
+
):
|
| 138 |
+
super().__init__()
|
| 139 |
+
self.weight = torch.nn.Parameter(weight, requires_grad=False)
|
| 140 |
+
self.weight_scale = torch.nn.Parameter(weight_scale, requires_grad=False)
|
| 141 |
+
self.bias = bias
|
| 142 |
+
self.native_fp8_support = native_fp8_support
|
| 143 |
+
self.dtype = dtype
|
| 144 |
+
|
| 145 |
+
# @torch.compile
|
| 146 |
+
def forward(self, x):
|
| 147 |
+
if x.dtype !=self.dtype:
|
| 148 |
+
x = x.to(self.dtype)
|
| 149 |
+
qinput, x_scale = per_tensor_quantize(x)
|
| 150 |
+
output = fp8_gemm(
|
| 151 |
+
A=qinput,
|
| 152 |
+
A_scale=x_scale,
|
| 153 |
+
B=self.weight,
|
| 154 |
+
B_scale=self.weight_scale,
|
| 155 |
+
bias=self.bias,
|
| 156 |
+
out_dtype=x.dtype,
|
| 157 |
+
native_fp8_support=self.native_fp8_support,
|
| 158 |
+
)
|
| 159 |
+
return output
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def FluxFp8GeMMProcessor(model: torch.nn.Module):
|
| 163 |
+
"""Processes a PyTorch model to convert eligible Linear layers to FP8 precision.
|
| 164 |
+
|
| 165 |
+
This function performs the following operations:
|
| 166 |
+
1. Checks for native FP8 support on the current GPU
|
| 167 |
+
2. Identifies target Linear layers in transformer blocks
|
| 168 |
+
3. Quantizes weights to FP8 format
|
| 169 |
+
4. Replaces original Linear layers with FP8DynamicLinear versions
|
| 170 |
+
5. Performs memory cleanup
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
model (torch.nn.Module): The neural network model to be processed.
|
| 174 |
+
Should contain transformer blocks with Linear layers.
|
| 175 |
+
"""
|
| 176 |
+
native_fp8_support = (
|
| 177 |
+
torch.cuda.is_available() and torch.cuda.get_device_capability() >= (9, 0)
|
| 178 |
+
)
|
| 179 |
+
named_modules = list(model.named_modules())
|
| 180 |
+
for name, linear in tqdm.tqdm(named_modules, desc="Quantizing weights to fp8"):
|
| 181 |
+
if isinstance(linear, torch.nn.Linear) and "blocks" in name:
|
| 182 |
+
quant_weight, weight_scale = per_tensor_quantize(linear.weight)
|
| 183 |
+
bias = copy.deepcopy(linear.bias) if linear.bias is not None else None
|
| 184 |
+
quant_linear = FP8DynamicLinear(
|
| 185 |
+
weight=quant_weight,
|
| 186 |
+
weight_scale=weight_scale,
|
| 187 |
+
bias=bias,
|
| 188 |
+
native_fp8_support=native_fp8_support,
|
| 189 |
+
dtype=linear.weight.dtype
|
| 190 |
+
)
|
| 191 |
+
replace_module(model, name, quant_linear)
|
| 192 |
+
del linear.weight
|
| 193 |
+
del linear.bias
|
| 194 |
+
del linear
|
| 195 |
+
cleanup_memory()
|
requirements.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.6.0
|
| 2 |
+
torchvision==0.21.0
|
| 3 |
+
triton==3.2.0
|
| 4 |
+
transformers==4.57.0
|
| 5 |
+
omegaconf==2.3.0
|
| 6 |
+
ninja==1.13.0
|
| 7 |
+
numpy==2.2.6
|
| 8 |
+
einops==0.8.1
|
| 9 |
+
moviepy==1.0.3
|
| 10 |
+
opencv-python==4.12.0.88
|
| 11 |
+
av==15.1.0
|
| 12 |
+
plyfile==1.1.2
|
| 13 |
+
ftfy==6.3.1
|
| 14 |
+
flask==3.1.2
|
| 15 |
+
gradio==5.49.1
|
| 16 |
+
gsplat==1.5.2
|
| 17 |
+
accelerate==1.10.1
|
| 18 |
+
git+https://github.com/huggingface/diffusers.git@447e8322f76efea55d4769cd67c372edbf0715b8
|
| 19 |
+
git+https://github.com/nerfstudio-project/gsplat.git@32f2a54d21c7ecb135320bb02b136b7407ae5712
|
utils.py
ADDED
|
@@ -0,0 +1,531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from io import BytesIO
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import importlib
|
| 8 |
+
from plyfile import PlyData, PlyElement
|
| 9 |
+
|
| 10 |
+
import copy
|
| 11 |
+
|
| 12 |
+
class EmbedContainer(nn.Module):
|
| 13 |
+
def __init__(self, tensor):
|
| 14 |
+
super().__init__()
|
| 15 |
+
self.tensor = nn.Parameter(tensor)
|
| 16 |
+
|
| 17 |
+
def forward(self):
|
| 18 |
+
return self.tensor
|
| 19 |
+
|
| 20 |
+
@torch.no_grad
|
| 21 |
+
def zero_init(module):
|
| 22 |
+
if type(module) is torch.nn.Conv2d or type(module) is torch.nn.Linear:
|
| 23 |
+
module.weight.zero_()
|
| 24 |
+
module.bias.zero_()
|
| 25 |
+
return module
|
| 26 |
+
|
| 27 |
+
def import_str(string):
|
| 28 |
+
# From https://github.com/CompVis/taming-transformers
|
| 29 |
+
module, cls = string.rsplit(".", 1)
|
| 30 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
| 31 |
+
|
| 32 |
+
"""
|
| 33 |
+
from https://github.com/Kai-46/minFM/blob/main/utils/ema.py
|
| 34 |
+
Exponential Moving Average (EMA) utilities for PyTorch models.
|
| 35 |
+
|
| 36 |
+
This module provides utilities for maintaining and updating EMA models,
|
| 37 |
+
which are commonly used to improve model stability and generalization
|
| 38 |
+
in training deep neural networks. It supports both regular tensors and
|
| 39 |
+
DTensors (from FSDP-wrapped models).
|
| 40 |
+
"""
|
| 41 |
+
class EMA_FSDP:
|
| 42 |
+
def __init__(self, fsdp_module: torch.nn.Module, decay: float = 0.999):
|
| 43 |
+
self.decay = decay
|
| 44 |
+
self.shadow = {}
|
| 45 |
+
self._init_shadow(fsdp_module)
|
| 46 |
+
|
| 47 |
+
@torch.no_grad()
|
| 48 |
+
def _init_shadow(self, fsdp_module):
|
| 49 |
+
# 判断是否是FSDP模型
|
| 50 |
+
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
| 51 |
+
if isinstance(fsdp_module, FSDP):
|
| 52 |
+
with FSDP.summon_full_params(fsdp_module, writeback=False):
|
| 53 |
+
for n, p in fsdp_module.module.named_parameters():
|
| 54 |
+
self.shadow[n] = p.detach().clone().float().cpu()
|
| 55 |
+
else:
|
| 56 |
+
for n, p in fsdp_module.named_parameters():
|
| 57 |
+
self.shadow[n] = p.detach().clone().float().cpu()
|
| 58 |
+
|
| 59 |
+
@torch.no_grad()
|
| 60 |
+
def update(self, fsdp_module):
|
| 61 |
+
d = self.decay
|
| 62 |
+
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
| 63 |
+
if isinstance(fsdp_module, FSDP):
|
| 64 |
+
with FSDP.summon_full_params(fsdp_module, writeback=False):
|
| 65 |
+
for n, p in fsdp_module.module.named_parameters():
|
| 66 |
+
self.shadow[n].mul_(d).add_(p.detach().float().cpu(), alpha=1. - d)
|
| 67 |
+
else:
|
| 68 |
+
for n, p in fsdp_module.named_parameters():
|
| 69 |
+
print(n, self.shadow[n])
|
| 70 |
+
self.shadow[n].mul_(d).add_(p.detach().float().cpu(), alpha=1. - d)
|
| 71 |
+
|
| 72 |
+
# Optional helpers ---------------------------------------------------
|
| 73 |
+
def state_dict(self):
|
| 74 |
+
return self.shadow # picklable
|
| 75 |
+
|
| 76 |
+
def load_state_dict(self, sd):
|
| 77 |
+
self.shadow = {k: v.clone() for k, v in sd.items()}
|
| 78 |
+
|
| 79 |
+
def copy_to(self, fsdp_module):
|
| 80 |
+
# load EMA weights into an (unwrapped) copy of the generator
|
| 81 |
+
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
| 82 |
+
with FSDP.summon_full_params(fsdp_module, writeback=True):
|
| 83 |
+
for n, p in fsdp_module.module.named_parameters():
|
| 84 |
+
if n in self.shadow:
|
| 85 |
+
p.data.copy_(self.shadow[n].to(p.dtype, device=p.device))
|
| 86 |
+
|
| 87 |
+
def create_raymaps(cameras, h, w):
|
| 88 |
+
rays_o, rays_d = create_rays(cameras, h, w)
|
| 89 |
+
raymaps = torch.cat([rays_d, rays_o - (rays_o * rays_d).sum(dim=-1, keepdim=True) * rays_d], dim=-1)
|
| 90 |
+
return raymaps
|
| 91 |
+
|
| 92 |
+
# def create_raymaps(cameras, h, w):
|
| 93 |
+
# rays_o, rays_d = create_rays(cameras, h, w)
|
| 94 |
+
# raymaps = torch.cat([rays_d, torch.cross(rays_d, rays_o, dim=-1)], dim=-1)
|
| 95 |
+
# return raymaps
|
| 96 |
+
|
| 97 |
+
class EMANorm(nn.Module):
|
| 98 |
+
def __init__(self, beta):
|
| 99 |
+
super().__init__()
|
| 100 |
+
self.register_buffer('magnitude_ema', torch.ones([]))
|
| 101 |
+
self.beta = beta
|
| 102 |
+
|
| 103 |
+
def forward(self, x):
|
| 104 |
+
if self.training:
|
| 105 |
+
magnitude_cur = x.detach().to(torch.float32).square().mean()
|
| 106 |
+
self.magnitude_ema.copy_(magnitude_cur.lerp(self.magnitude_ema.to(torch.float32), self.beta))
|
| 107 |
+
input_gain = self.magnitude_ema.rsqrt()
|
| 108 |
+
x = x.mul(input_gain)
|
| 109 |
+
return x
|
| 110 |
+
|
| 111 |
+
class TimestepEmbedding(nn.Module):
|
| 112 |
+
def __init__(self, dim, max_period=10000, time_factor: float = 1000.0, zero_weight: bool = True):
|
| 113 |
+
super().__init__()
|
| 114 |
+
self.max_period = max_period
|
| 115 |
+
self.time_factor = time_factor
|
| 116 |
+
self.dim = dim
|
| 117 |
+
if zero_weight:
|
| 118 |
+
self.weight = nn.Parameter(torch.zeros(dim))
|
| 119 |
+
else:
|
| 120 |
+
self.weight = None
|
| 121 |
+
|
| 122 |
+
def forward(self, t):
|
| 123 |
+
if self.weight is None:
|
| 124 |
+
return timestep_embedding(t, self.dim, self.max_period, self.time_factor)
|
| 125 |
+
else:
|
| 126 |
+
return timestep_embedding(t, self.dim, self.max_period, self.time_factor) * self.weight.unsqueeze(0)
|
| 127 |
+
|
| 128 |
+
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True)
|
| 129 |
+
def timestep_embedding(t, dim, max_period=10000, time_factor: float = 1000.0):
|
| 130 |
+
"""
|
| 131 |
+
Create sinusoidal timestep embeddings.
|
| 132 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
| 133 |
+
These may be fractional.
|
| 134 |
+
:param dim: the dimension of the output.
|
| 135 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 136 |
+
:return: an (N, D) Tensor of positional embeddings.
|
| 137 |
+
"""
|
| 138 |
+
t = time_factor * t
|
| 139 |
+
half = dim // 2
|
| 140 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
|
| 141 |
+
|
| 142 |
+
args = t[:, None].float() * freqs[None]
|
| 143 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 144 |
+
if dim % 2:
|
| 145 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 146 |
+
if torch.is_floating_point(t):
|
| 147 |
+
embedding = embedding.to(t)
|
| 148 |
+
return embedding
|
| 149 |
+
|
| 150 |
+
def quaternion_to_matrix(quaternions):
|
| 151 |
+
"""
|
| 152 |
+
Convert rotations given as quaternions to rotation matrices.
|
| 153 |
+
Args:
|
| 154 |
+
quaternions: quaternions with real part first,
|
| 155 |
+
as tensor of shape (..., 4).
|
| 156 |
+
Returns:
|
| 157 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
| 158 |
+
"""
|
| 159 |
+
r, i, j, k = torch.unbind(quaternions, -1)
|
| 160 |
+
two_s = 2.0 / (quaternions * quaternions).sum(-1)
|
| 161 |
+
|
| 162 |
+
o = torch.stack(
|
| 163 |
+
(
|
| 164 |
+
1 - two_s * (j * j + k * k),
|
| 165 |
+
two_s * (i * j - k * r),
|
| 166 |
+
two_s * (i * k + j * r),
|
| 167 |
+
two_s * (i * j + k * r),
|
| 168 |
+
1 - two_s * (i * i + k * k),
|
| 169 |
+
two_s * (j * k - i * r),
|
| 170 |
+
two_s * (i * k - j * r),
|
| 171 |
+
two_s * (j * k + i * r),
|
| 172 |
+
1 - two_s * (i * i + j * j),
|
| 173 |
+
),
|
| 174 |
+
-1,
|
| 175 |
+
)
|
| 176 |
+
return o.reshape(quaternions.shape[:-1] + (3, 3))
|
| 177 |
+
|
| 178 |
+
# from https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#matrix_to_quaternion
|
| 179 |
+
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
|
| 180 |
+
"""
|
| 181 |
+
Convert a unit quaternion to a standard form: one in which the real
|
| 182 |
+
part is non negative.
|
| 183 |
+
|
| 184 |
+
Args:
|
| 185 |
+
quaternions: Quaternions with real part first,
|
| 186 |
+
as tensor of shape (..., 4).
|
| 187 |
+
|
| 188 |
+
Returns:
|
| 189 |
+
Standardized quaternions as tensor of shape (..., 4).
|
| 190 |
+
"""
|
| 191 |
+
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)
|
| 192 |
+
|
| 193 |
+
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
|
| 194 |
+
"""
|
| 195 |
+
Returns torch.sqrt(torch.max(0, x))
|
| 196 |
+
but with a zero subgradient where x is 0.
|
| 197 |
+
"""
|
| 198 |
+
ret = torch.zeros_like(x)
|
| 199 |
+
positive_mask = x > 0
|
| 200 |
+
if torch.is_grad_enabled():
|
| 201 |
+
ret[positive_mask] = torch.sqrt(x[positive_mask])
|
| 202 |
+
else:
|
| 203 |
+
ret = torch.where(positive_mask, torch.sqrt(x), ret)
|
| 204 |
+
return ret
|
| 205 |
+
|
| 206 |
+
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
|
| 207 |
+
"""
|
| 208 |
+
Convert rotations given as rotation matrices to quaternions.
|
| 209 |
+
|
| 210 |
+
Args:
|
| 211 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
| 212 |
+
|
| 213 |
+
Returns:
|
| 214 |
+
quaternions with real part first, as tensor of shape (..., 4).
|
| 215 |
+
"""
|
| 216 |
+
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
|
| 217 |
+
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
|
| 218 |
+
|
| 219 |
+
batch_dim = matrix.shape[:-2]
|
| 220 |
+
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
|
| 221 |
+
matrix.reshape(batch_dim + (9,)), dim=-1
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
q_abs = _sqrt_positive_part(
|
| 225 |
+
torch.stack(
|
| 226 |
+
[
|
| 227 |
+
1.0 + m00 + m11 + m22,
|
| 228 |
+
1.0 + m00 - m11 - m22,
|
| 229 |
+
1.0 - m00 + m11 - m22,
|
| 230 |
+
1.0 - m00 - m11 + m22,
|
| 231 |
+
],
|
| 232 |
+
dim=-1,
|
| 233 |
+
)
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# we produce the desired quaternion multiplied by each of r, i, j, k
|
| 237 |
+
quat_by_rijk = torch.stack(
|
| 238 |
+
[
|
| 239 |
+
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
| 240 |
+
# `int`.
|
| 241 |
+
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
|
| 242 |
+
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
| 243 |
+
# `int`.
|
| 244 |
+
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
|
| 245 |
+
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
| 246 |
+
# `int`.
|
| 247 |
+
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
|
| 248 |
+
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
| 249 |
+
# `int`.
|
| 250 |
+
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
|
| 251 |
+
],
|
| 252 |
+
dim=-2,
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
|
| 256 |
+
# the candidate won't be picked.
|
| 257 |
+
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
|
| 258 |
+
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
|
| 259 |
+
|
| 260 |
+
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
|
| 261 |
+
# forall i; we pick the best-conditioned one (with the largest denominator)
|
| 262 |
+
indices = q_abs.argmax(dim=-1, keepdim=True)
|
| 263 |
+
expand_dims = list(batch_dim) + [1, 4]
|
| 264 |
+
gather_indices = indices.unsqueeze(-1).expand(expand_dims)
|
| 265 |
+
out = torch.gather(quat_candidates, -2, gather_indices).squeeze(-2)
|
| 266 |
+
return standardize_quaternion(out)
|
| 267 |
+
|
| 268 |
+
@torch.amp.autocast(device_type="cuda", enabled=False)
|
| 269 |
+
def normalize_cameras(cameras, return_meta=False, ref_w2c=None, T_norm=None, n_frame=None):
|
| 270 |
+
B, N = cameras.shape[:2]
|
| 271 |
+
|
| 272 |
+
c2ws = torch.zeros(B, N, 3, 4, device=cameras.device)
|
| 273 |
+
|
| 274 |
+
c2ws[..., :3, :3] = quaternion_to_matrix(cameras[..., 0:4])
|
| 275 |
+
c2ws[..., :, 3] = cameras[..., 4:7]
|
| 276 |
+
|
| 277 |
+
_c2ws = c2ws
|
| 278 |
+
|
| 279 |
+
ref_w2c = torch.inverse(matrix_to_square(_c2ws[:, :1])) if ref_w2c is None else ref_w2c
|
| 280 |
+
_c2ws = (ref_w2c.repeat(1, N, 1, 1) @ matrix_to_square(_c2ws))[..., :3, :]
|
| 281 |
+
|
| 282 |
+
if n_frame is not None:
|
| 283 |
+
T_norm = _c2ws[..., :n_frame, :3, 3].norm(dim=-1).max(dim=1)[0][..., None, None] if T_norm is None else T_norm
|
| 284 |
+
else:
|
| 285 |
+
T_norm = _c2ws[..., :3, 3].norm(dim=-1).max(dim=1)[0][..., None, None] if T_norm is None else T_norm
|
| 286 |
+
|
| 287 |
+
_c2ws[..., :3, 3] = _c2ws[..., :3, 3] / (T_norm + 1e-2)
|
| 288 |
+
|
| 289 |
+
R = matrix_to_quaternion(_c2ws[..., :3, :3])
|
| 290 |
+
T = _c2ws[..., :3, 3]
|
| 291 |
+
cameras = torch.cat([R.float(), T.float(), cameras[..., 7:]], dim=-1)
|
| 292 |
+
|
| 293 |
+
if return_meta:
|
| 294 |
+
return cameras, ref_w2c, T_norm
|
| 295 |
+
else:
|
| 296 |
+
return cameras
|
| 297 |
+
|
| 298 |
+
def create_rays(cameras, h, w, uv_offset=None):
|
| 299 |
+
prefix_shape = cameras.shape[:-1]
|
| 300 |
+
cameras = cameras.flatten(0, -2)
|
| 301 |
+
device = cameras.device
|
| 302 |
+
N = cameras.shape[0]
|
| 303 |
+
|
| 304 |
+
c2w = torch.eye(4, device=device)[None].repeat(N, 1, 1)
|
| 305 |
+
c2w[:, :3, :3] = quaternion_to_matrix(cameras[:, :4])
|
| 306 |
+
c2w[:, :3, 3] = cameras[:, 4:7]
|
| 307 |
+
|
| 308 |
+
# fx, fy, cx, cy should be divided by original H, W
|
| 309 |
+
fx, fy, cx, cy = cameras[:, 7:].chunk(4, -1)
|
| 310 |
+
|
| 311 |
+
fx, cx = fx * w, cx * w
|
| 312 |
+
fy, cy = fy * h, cy * h
|
| 313 |
+
|
| 314 |
+
inds = torch.arange(0, h*w, device=device).expand(N, h*w)
|
| 315 |
+
|
| 316 |
+
i = inds % w + 0.5
|
| 317 |
+
j = torch.div(inds, w, rounding_mode='floor') + 0.5
|
| 318 |
+
|
| 319 |
+
u = i / cx + (uv_offset[..., 0].reshape(N, h*w) if uv_offset is not None else 0)
|
| 320 |
+
v = j / cy + (uv_offset[..., 1].reshape(N, h*w) if uv_offset is not None else 0)
|
| 321 |
+
|
| 322 |
+
zs = - torch.ones_like(i)
|
| 323 |
+
xs = - (u - 1) * cx / fx * zs
|
| 324 |
+
ys = (v - 1) * cy / fy * zs
|
| 325 |
+
directions = torch.stack((xs, ys, zs), dim=-1)
|
| 326 |
+
|
| 327 |
+
rays_d = F.normalize(directions @ c2w[:, :3, :3].transpose(-1, -2), dim=-1)
|
| 328 |
+
|
| 329 |
+
rays_o = c2w[..., :3, 3] # [B, 3]
|
| 330 |
+
rays_o = rays_o[..., None, :].expand_as(rays_d)
|
| 331 |
+
|
| 332 |
+
rays_o = rays_o.reshape(*prefix_shape, h, w, 3)
|
| 333 |
+
rays_d = rays_d.reshape(*prefix_shape, h, w, 3)
|
| 334 |
+
|
| 335 |
+
return rays_o, rays_d
|
| 336 |
+
|
| 337 |
+
def matrix_to_square(mat):
|
| 338 |
+
l = len(mat.shape)
|
| 339 |
+
if l==3:
|
| 340 |
+
return torch.cat([mat, torch.tensor([0,0,0,1]).repeat(mat.shape[0],1,1).to(mat.device)],dim=1)
|
| 341 |
+
elif l==4:
|
| 342 |
+
return torch.cat([mat, torch.tensor([0,0,0,1]).repeat(mat.shape[0],mat.shape[1],1,1).to(mat.device)],dim=2)
|
| 343 |
+
|
| 344 |
+
def export_ply_for_gaussians(path, gaussians, opacity_threshold=0.00, T_norm=None):
|
| 345 |
+
|
| 346 |
+
sh_degree = int(math.sqrt((gaussians.shape[-1] - sum([3, 1, 3, 4])) / 3 - 1))
|
| 347 |
+
|
| 348 |
+
xyz, opacity, scale, rotation, feature = gaussians.float().split([3, 1, 3, 4, (sh_degree + 1)**2 * 3], dim=-1)
|
| 349 |
+
|
| 350 |
+
means3D = xyz.contiguous().float()
|
| 351 |
+
opacity = opacity.contiguous().float()
|
| 352 |
+
scales = scale.contiguous().float()
|
| 353 |
+
rotations = rotation.contiguous().float()
|
| 354 |
+
shs = feature.contiguous().float() # [N, 1, 3]
|
| 355 |
+
|
| 356 |
+
# print(means3D.shape, opacity.shape, scales.shape, rotations.shape, shs.shape)
|
| 357 |
+
|
| 358 |
+
# prune by opacity
|
| 359 |
+
if opacity_threshold > 0:
|
| 360 |
+
mask = opacity[..., 0] >= opacity_threshold
|
| 361 |
+
means3D = means3D[mask]
|
| 362 |
+
opacity = opacity[mask]
|
| 363 |
+
scales = scales[mask]
|
| 364 |
+
rotations = rotations[mask]
|
| 365 |
+
shs = shs[mask]
|
| 366 |
+
|
| 367 |
+
print("Gaussian percentage: ", mask.float().mean())
|
| 368 |
+
|
| 369 |
+
if T_norm is not None:
|
| 370 |
+
means3D = means3D * T_norm.item()
|
| 371 |
+
scales = scales * T_norm.item()
|
| 372 |
+
|
| 373 |
+
# invert activation to make it compatible with the original ply format
|
| 374 |
+
opacity = torch.log(opacity/(1-opacity))
|
| 375 |
+
scales = torch.log(scales + 1e-8)
|
| 376 |
+
|
| 377 |
+
xyzs = means3D.detach() # .cpu().numpy()
|
| 378 |
+
f_dc = shs.detach().flatten(start_dim=1).contiguous() #.cpu().numpy()
|
| 379 |
+
opacities = opacity.detach() #.cpu().numpy()
|
| 380 |
+
scales = scales.detach() #.cpu().numpy()
|
| 381 |
+
rotations = rotations.detach() #.cpu().numpy()
|
| 382 |
+
|
| 383 |
+
l = ['x', 'y', 'z']
|
| 384 |
+
# All channels except the 3 DC
|
| 385 |
+
for i in range(f_dc.shape[1]):
|
| 386 |
+
l.append('f_dc_{}'.format(i))
|
| 387 |
+
l.append('opacity')
|
| 388 |
+
for i in range(scales.shape[1]):
|
| 389 |
+
l.append('scale_{}'.format(i))
|
| 390 |
+
for i in range(rotations.shape[1]):
|
| 391 |
+
l.append('rot_{}'.format(i))
|
| 392 |
+
|
| 393 |
+
dtype_full = [(attribute, 'f4') for attribute in l]
|
| 394 |
+
|
| 395 |
+
# 最优化方案:使用numpy的recarray直接创建
|
| 396 |
+
attributes = torch.cat((xyzs, f_dc, opacities, scales, rotations), dim=1).cpu().numpy()
|
| 397 |
+
|
| 398 |
+
# 使用recarray直接创建,避免循环和类型转换
|
| 399 |
+
elements = np.rec.fromarrays([attributes[:, i] for i in range(attributes.shape[1])], names=l, formats=['f4'] * len(l))
|
| 400 |
+
el = PlyElement.describe(elements, 'vertex')
|
| 401 |
+
|
| 402 |
+
print(path)
|
| 403 |
+
|
| 404 |
+
PlyData([el]).write(path)
|
| 405 |
+
|
| 406 |
+
# plydata = PlyData([el])
|
| 407 |
+
|
| 408 |
+
# vert = plydata["vertex"]
|
| 409 |
+
# sorted_indices = np.argsort(
|
| 410 |
+
# -np.exp(vert["scale_0"] + vert["scale_1"] + vert["scale_2"])
|
| 411 |
+
# / (1 + np.exp(-vert["opacity"]))
|
| 412 |
+
# )
|
| 413 |
+
# buffer = BytesIO()
|
| 414 |
+
# for idx in sorted_indices:
|
| 415 |
+
# v = plydata["vertex"][idx]
|
| 416 |
+
# position = np.array([v["x"], v["y"], v["z"]], dtype=np.float32)
|
| 417 |
+
# scales = np.exp(
|
| 418 |
+
# np.array(
|
| 419 |
+
# [v["scale_0"], v["scale_1"], v["scale_2"]],
|
| 420 |
+
# dtype=np.float32,
|
| 421 |
+
# )
|
| 422 |
+
# )
|
| 423 |
+
# rot = np.array(
|
| 424 |
+
# [v["rot_0"], v["rot_1"], v["rot_2"], v["rot_3"]],
|
| 425 |
+
# dtype=np.float32,
|
| 426 |
+
# )
|
| 427 |
+
# SH_C0 = 0.28209479177387814
|
| 428 |
+
# color = np.array(
|
| 429 |
+
# [
|
| 430 |
+
# 0.5 + SH_C0 * v["f_dc_0"],
|
| 431 |
+
# 0.5 + SH_C0 * v["f_dc_1"],
|
| 432 |
+
# 0.5 + SH_C0 * v["f_dc_2"],
|
| 433 |
+
# 1 / (1 + np.exp(-v["opacity"])),
|
| 434 |
+
# ]
|
| 435 |
+
# )
|
| 436 |
+
# buffer.write(position.tobytes())
|
| 437 |
+
# buffer.write(scales.tobytes())
|
| 438 |
+
# buffer.write((color * 255).clip(0, 255).astype(np.uint8).tobytes())
|
| 439 |
+
# buffer.write(
|
| 440 |
+
# ((rot / np.linalg.norm(rot)) * 128 + 128)
|
| 441 |
+
# .clip(0, 255)
|
| 442 |
+
# .astype(np.uint8)
|
| 443 |
+
# .tobytes()
|
| 444 |
+
# )
|
| 445 |
+
|
| 446 |
+
# with open(path + '.splat', "wb") as f:
|
| 447 |
+
# f.write(buffer.getvalue())
|
| 448 |
+
|
| 449 |
+
@torch.amp.autocast(device_type="cuda", enabled=False)
|
| 450 |
+
def quaternion_slerp(
|
| 451 |
+
q0, q1, fraction, spin: int = 0, shortestpath: bool = True
|
| 452 |
+
):
|
| 453 |
+
"""Return spherical linear interpolation between two quaternions.
|
| 454 |
+
Args:
|
| 455 |
+
quat0: first quaternion
|
| 456 |
+
quat1: second quaternion
|
| 457 |
+
fraction: how much to interpolate between quat0 vs quat1 (if 0, closer to quat0; if 1, closer to quat1)
|
| 458 |
+
spin: how much of an additional spin to place on the interpolation
|
| 459 |
+
shortestpath: whether to return the short or long path to rotation
|
| 460 |
+
"""
|
| 461 |
+
d = (q0 * q1).sum(-1)
|
| 462 |
+
if shortestpath:
|
| 463 |
+
# invert rotation
|
| 464 |
+
d[d < 0.0] = -d[d < 0.0]
|
| 465 |
+
q1[d < 0.0] = q1[d < 0.0]
|
| 466 |
+
|
| 467 |
+
_d = d.clamp(0, 1.0)
|
| 468 |
+
|
| 469 |
+
# theta = torch.arccos(d) * fraction
|
| 470 |
+
# q2 = q1 - q0 * d
|
| 471 |
+
# q2 = q2 / (q2.norm(dim=-1) + 1e-10)
|
| 472 |
+
|
| 473 |
+
# return torch.cos(theta) * q0 + torch.sin(theta) * q2
|
| 474 |
+
|
| 475 |
+
angle = torch.acos(_d) + spin * math.pi
|
| 476 |
+
isin = 1.0 / (torch.sin(angle)+ 1e-10)
|
| 477 |
+
q0_ = q0 * (torch.sin((1.0 - fraction) * angle) * isin)[..., None]
|
| 478 |
+
q1_ = q1 * (torch.sin(fraction * angle) * isin)[..., None]
|
| 479 |
+
|
| 480 |
+
q = q0_ + q1_
|
| 481 |
+
|
| 482 |
+
q[angle < 1e-5] = q0[angle < 1e-5]
|
| 483 |
+
# q[fraction < 1e-5] = q0[fraction < 1e-5]
|
| 484 |
+
# q[fraction > 1 - 1e-5] = q1[fraction > 1 - 1e-5]
|
| 485 |
+
# q[(d.abs() - 1).abs() < 1e-5] = q0[(d.abs() - 1).abs() < 1e-5]
|
| 486 |
+
|
| 487 |
+
return q
|
| 488 |
+
|
| 489 |
+
def sample_from_two_pose(pose_a, pose_b, fraction, noise_strengths=[0, 0]):
|
| 490 |
+
"""
|
| 491 |
+
Args:
|
| 492 |
+
pose_a: first pose
|
| 493 |
+
pose_b: second pose
|
| 494 |
+
fraction
|
| 495 |
+
"""
|
| 496 |
+
|
| 497 |
+
quat_a = pose_a[..., :4]
|
| 498 |
+
quat_b = pose_b[..., :4]
|
| 499 |
+
|
| 500 |
+
dot = torch.sum(quat_a * quat_b, dim=-1, keepdim=True)
|
| 501 |
+
quat_b = torch.where(dot < 0, -quat_b, quat_b)
|
| 502 |
+
|
| 503 |
+
quaternion = quaternion_slerp(quat_a, quat_b, fraction)
|
| 504 |
+
quaternion = torch.nn.functional.normalize(quaternion + torch.randn_like(quaternion) * noise_strengths[0], dim=-1)
|
| 505 |
+
|
| 506 |
+
T = (1 - fraction)[:, None] * pose_a[..., 4:] + fraction[:, None] * pose_b[..., 4:]
|
| 507 |
+
T = T + torch.randn_like(T) * noise_strengths[1]
|
| 508 |
+
|
| 509 |
+
new_pose = pose_a.clone()
|
| 510 |
+
new_pose[..., :4] = quaternion
|
| 511 |
+
new_pose[..., 4:] = T
|
| 512 |
+
return new_pose
|
| 513 |
+
|
| 514 |
+
def sample_from_dense_cameras(dense_cameras, t, noise_strengths=[0, 0, 0, 0]):
|
| 515 |
+
N, C = dense_cameras.shape
|
| 516 |
+
M = t.shape
|
| 517 |
+
|
| 518 |
+
left = torch.floor(t * (N-1)).long().clamp(0, N-2)
|
| 519 |
+
right = left + 1
|
| 520 |
+
fraction = t * (N-1) - left
|
| 521 |
+
|
| 522 |
+
a = torch.gather(dense_cameras, 0, left[..., None].repeat(1, C))
|
| 523 |
+
b = torch.gather(dense_cameras, 0, right[..., None].repeat(1, C))
|
| 524 |
+
|
| 525 |
+
new_pose = sample_from_two_pose(a[:, :7],
|
| 526 |
+
b[:, :7], fraction, noise_strengths=noise_strengths[:2])
|
| 527 |
+
|
| 528 |
+
new_ins = (1 - fraction)[:, None] * a[:, 7:] + fraction[:, None] * b[:, 7:]
|
| 529 |
+
|
| 530 |
+
return torch.cat([new_pose, new_ins], dim=1)
|
| 531 |
+
|