Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| import gradio as gr | |
| import cv2 | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| from transformers import CLIPVisionModelWithProjection | |
| from diffusers.utils import load_image | |
| from diffusers.models import ControlNetModel | |
| # from diffusers.image_processor import IPAdapterMaskProcessor | |
| from insightface.app import FaceAnalysis | |
| # import sys | |
| # import glob | |
| # import os | |
| import io | |
| import spaces | |
| from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps | |
| import pandas as pd | |
| import json | |
| import requests | |
| from PIL import Image | |
| from io import BytesIO | |
| def resize_img(input_image, max_side=1280, min_side=1024, size=None, | |
| pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): | |
| w, h = input_image.size | |
| if size is not None: | |
| w_resize_new, h_resize_new = size | |
| else: | |
| ratio = min_side / min(h, w) | |
| w, h = round(ratio*w), round(ratio*h) | |
| ratio = max_side / max(h, w) | |
| input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) | |
| w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
| h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
| input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
| if pad_to_max_side: | |
| res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
| offset_x = (max_side - w_resize_new) // 2 | |
| offset_y = (max_side - h_resize_new) // 2 | |
| res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) | |
| input_image = Image.fromarray(res) | |
| return input_image | |
| def process_image_by_bbox_larger(input_image, bbox_xyxy, min_bbox_ratio=0.2): | |
| """ | |
| Process an image based on a bounding box, cropping and resizing as necessary. | |
| Parameters: | |
| - input_image: PIL Image object. | |
| - bbox_xyxy: Tuple (x1, y1, x2, y2) representing the bounding box coordinates. | |
| Returns: | |
| - A processed image cropped and resized to 1024x1024 if the bounding box is valid, | |
| or None if the bounding box does not meet the required size criteria. | |
| """ | |
| # Constants | |
| target_size = 1024 | |
| # min_bbox_ratio = 0.2 # Bounding box should be at least 20% of the crop | |
| # Extract bounding box coordinates | |
| x1, y1, x2, y2 = bbox_xyxy | |
| bbox_w = x2 - x1 | |
| bbox_h = y2 - y1 | |
| # Calculate the area of the bounding box | |
| bbox_area = bbox_w * bbox_h | |
| # Start with the smallest square crop that allows bbox to be at least 20% of the crop area | |
| crop_size = max(bbox_w, bbox_h) | |
| initial_crop_area = crop_size * crop_size | |
| while (bbox_area / initial_crop_area) < min_bbox_ratio: | |
| crop_size += 10 # Gradually increase until bbox is at least 20% of the area | |
| initial_crop_area = crop_size * crop_size | |
| # Once the minimum condition is satisfied, try to expand the crop further | |
| max_possible_crop_size = min(input_image.width, input_image.height) | |
| while crop_size < max_possible_crop_size: | |
| # Calculate a potential new area | |
| new_crop_size = crop_size + 10 | |
| new_crop_area = new_crop_size * new_crop_size | |
| if (bbox_area / new_crop_area) < min_bbox_ratio: | |
| break # Stop if expanding further violates the 20% rule | |
| crop_size = new_crop_size | |
| # Determine the center of the bounding box | |
| center_x = (x1 + x2) // 2 | |
| center_y = (y1 + y2) // 2 | |
| # Calculate the crop coordinates centered around the bounding box | |
| crop_x1 = max(0, center_x - crop_size // 2) | |
| crop_y1 = max(0, center_y - crop_size // 2) | |
| crop_x2 = min(input_image.width, crop_x1 + crop_size) | |
| crop_y2 = min(input_image.height, crop_y1 + crop_size) | |
| # Ensure the crop is square, adjust if it goes out of image bounds | |
| if crop_x2 - crop_x1 != crop_y2 - crop_y1: | |
| side_length = min(crop_x2 - crop_x1, crop_y2 - crop_y1) | |
| crop_x2 = crop_x1 + side_length | |
| crop_y2 = crop_y1 + side_length | |
| # Crop the image | |
| cropped_image = input_image.crop((crop_x1, crop_y1, crop_x2, crop_y2)) | |
| # Resize the cropped image to 1024x1024 | |
| resized_image = cropped_image.resize((target_size, target_size), Image.LANCZOS) | |
| return resized_image | |
| def calc_emb_cropped(image, app): | |
| face_image = image.copy() | |
| face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) | |
| face_info = face_info[0] | |
| cropped_face_image = process_image_by_bbox_larger(face_image, face_info["bbox"], min_bbox_ratio=0.2) | |
| return cropped_face_image | |
| def process_benchmark_csv(banchmark_csv_path): | |
| # Reading the first CSV file into a DataFrame | |
| df = pd.read_csv(banchmark_csv_path) | |
| # Drop any unnamed columns | |
| df = df.loc[:, ~df.columns.str.contains('^Unnamed')] | |
| # Drop columns with all NaN values | |
| df.dropna(axis=1, how='all', inplace=True) | |
| # Drop rows with all NaN values | |
| df.dropna(axis=0, how='all', inplace=True) | |
| df = df.loc[df['High resolution'] == 1] | |
| df.reset_index(drop=True, inplace=True) | |
| return df | |
| def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True): | |
| if w_bilateral: | |
| image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY) | |
| bilateral_filtered_image = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75) | |
| image = cv2.Canny(bilateral_filtered_image, min_val, max_val) | |
| else: | |
| image = np.array(image) | |
| image = cv2.Canny(image, min_val, max_val) | |
| image = image[:, :, None] | |
| image = np.concatenate([image, image, image], axis=2) | |
| image = Image.fromarray(image) | |
| return image | |
| default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers" | |
| # Load face detection and recognition package | |
| app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider']) | |
| app.prepare(ctx_id=0, det_size=(640, 640)) | |
| base_dir = "./instantID_ckpt/checkpoint_174000" | |
| face_adapter = f'{base_dir}/pytorch_model.bin' | |
| controlnet_path = f'{base_dir}/controlnet' | |
| base_model_path = f'briaai/BRIA-2.3' | |
| resolution = 1024 | |
| controlnet_lnmks = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) | |
| controlnet_canny = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-Canny", | |
| torch_dtype=torch.float16) | |
| controlnet = [controlnet_lnmks, controlnet_canny] | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| '/home/ubuntu/BRIA-2.3-InstantID/ip_adapter/image_encoder', | |
| torch_dtype=torch.float16, | |
| ) | |
| pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( | |
| base_model_path, | |
| controlnet=controlnet, | |
| torch_dtype=torch.float16, | |
| image_encoder=image_encoder # For compatibility issues - needs to be there | |
| ) | |
| pipe = pipe.to(device) | |
| use_native_ip_adapter = True | |
| pipe.use_native_ip_adapter=use_native_ip_adapter | |
| pipe.load_ip_adapter_instantid(face_adapter) | |
| clip_embeds=None | |
| Loras_dict = { | |
| "":"", | |
| "Vangogh_Vanilla": "bold, dramatic brush strokes, vibrant colors, swirling patterns, intense, emotionally charged paintings of", | |
| "Avatar_internlm": "2d anime sketch avatar of", | |
| # "Tomer_Hanuka_V3": "Fluid lines", | |
| "Storyboards": "Illustration style for storyboarding", | |
| "3D_illustration": "3D object illustration, abstract", | |
| # "beetl_general_death_style_v2": "a pale, dead, unnatural color face with dark circles around the eyes", | |
| "Characters": "gaming vector Art" | |
| } | |
| lora_names = Loras_dict.keys() | |
| lora_base_path = "./LoRAs" | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, 99999999) | |
| return seed | |
| def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale=0.8, kps_scale=0.6, canny_scale=0.4, lora_name="", lora_scale=0.7, progress=gr.Progress(track_tqdm=True)): | |
| if image_path is None: | |
| raise gr.Error(f"Cannot find any input face image! Please upload a face image.") | |
| # img = np.array(Image.open(image_path))[:,:,::-1] | |
| img = Image.open(image_path) | |
| face_image_orig = img #Image.open(BytesIO(response.content)) | |
| face_image_cropped = calc_emb_cropped(face_image_orig, app) | |
| face_image = resize_img(face_image_cropped, max_side=resolution, min_side=resolution) | |
| # face_image_padded = resize_img(face_image_cropped, max_side=resolution, min_side=resolution, pad_to_max_side=True) | |
| face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) | |
| face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face | |
| face_emb = face_info['embedding'] | |
| face_kps = draw_kps(face_image, face_info['kps']) | |
| if canny_scale>0.0: | |
| # Convert PIL image to a file-like object | |
| image_file = io.BytesIO() | |
| face_image_cropped.save(image_file, format='JPEG') # Save in the desired format (e.g., 'JPEG' or 'PNG') | |
| image_file.seek(0) # Move to the start of the BytesIO stream | |
| url = "https://engine.prod.bria-api.com/v1/background/remove" | |
| payload = {} | |
| files = [ | |
| ('file', ('image_name.jpeg', image_file, 'image/jpeg')) # Specify file name, file-like object, and MIME type | |
| ] | |
| headers = { | |
| 'api_token': 'a10d6386dd6a11ebba800242ac130004' | |
| } | |
| response = requests.request("POST", url, headers=headers, data=payload, files=files) | |
| print(response.text) | |
| response_json = json.loads(response.content.decode('utf-8')) | |
| img = requests.get(response_json['result_url']) | |
| processed_image = Image.open(io.BytesIO(img.content)) | |
| # Assuming `processed_image` is the RGBA image returned | |
| if processed_image.mode == 'RGBA': | |
| # Create a white background image | |
| white_background = Image.new("RGB", processed_image.size, (255, 255, 255)) | |
| # Composite the RGBA image over the white background | |
| face_image = Image.alpha_composite(white_background.convert('RGBA'), processed_image).convert('RGB') | |
| else: | |
| face_image = processed_image.convert('RGB') # If already RGB, just ensure mode is correct | |
| canny_img = make_canny_condition(face_image, min_val=20, max_val=40, w_bilateral=True) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| if lora_name != "": | |
| lora_path = os.path.join(lora_base_path, lora_name, "pytorch_lora_weights.safetensors") | |
| pipe.load_lora_weights(lora_path) | |
| pipe.fuse_lora(lora_scale) | |
| pipe.enable_lora() | |
| lora_prefix = Loras_dict[lora_name] | |
| prompt = f"{lora_prefix} {prompt}" | |
| print("Start inference...") | |
| images = pipe( | |
| prompt = prompt, | |
| negative_prompt = default_negative_prompt, | |
| image_embeds = face_emb, | |
| image = [face_kps, canny_img] if canny_scale>0.0 else face_kps, | |
| controlnet_conditioning_scale = [kps_scale, canny_scale] if canny_scale>0.0 else kps_scale, | |
| control_guidance_end = [1.0, 1.0] if canny_scale>0.0 else 1.0, | |
| ip_adapter_scale = ip_adapter_scale, | |
| num_inference_steps = num_steps, | |
| guidance_scale = guidance_scale, | |
| generator = generator, | |
| visual_prompt_embds = clip_embeds, | |
| cross_attention_kwargs = None, | |
| num_images_per_prompt=num_images, | |
| ).images #[0] | |
| if lora_name != "": | |
| pipe.disable_lora() | |
| pipe.unfuse_lora() | |
| pipe.unload_lora_weights() | |
| return images | |
| ### Description | |
| title = r""" | |
| <h1>Bria-2.3 ID preservation</h1> | |
| """ | |
| description = r""" | |
| <b>🤗 Gradio demo</b> for bria ID preservation.<br> | |
| Steps:<br> | |
| 1. Upload an image with a face. If multiple faces are detected, we use the largest one. For images with already tightly cropped faces, detection may fail, try images with a larger margin. | |
| 2. Click <b>Submit</b> to generate new images of the subject. | |
| """ | |
| Footer = r""" | |
| Enjoy | |
| """ | |
| css = ''' | |
| .gradio-container {width: 85% !important} | |
| ''' | |
| with gr.Blocks(css=css) as demo: | |
| # description | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| with gr.Row(): | |
| with gr.Column(): | |
| # upload face image | |
| img_file = gr.Image(label="Upload a photo with a face", type="filepath") | |
| # Textbox for entering a prompt | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Enter your prompt here", | |
| info="Describe what you want to generate or modify in the image." | |
| ) | |
| lora_name = gr.Dropdown(choices=lora_names, label="LoRA", value="", info="Select a LoRA name from the list, not selecting any will disable LoRA.") | |
| submit = gr.Button("Submit", variant="primary") | |
| # use_lcm = gr.Checkbox( | |
| # label="Use LCM-LoRA to accelerate sampling", value=False, | |
| # info="Reduces sampling steps significantly, but may decrease quality.", | |
| # ) | |
| with gr.Accordion(open=False, label="Advanced Options"): | |
| num_steps = gr.Slider( | |
| label="Number of sample steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=30, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.1, | |
| maximum=10.0, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_images = gr.Slider( | |
| label="Number of output images", | |
| minimum=1, | |
| maximum=3, | |
| step=1, | |
| value=1, | |
| ) | |
| ip_adapter_scale = gr.Slider( | |
| label="ip adapter scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=0.8, | |
| ) | |
| kps_scale = gr.Slider( | |
| label="kps control scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=0.6, | |
| ) | |
| canny_scale = gr.Slider( | |
| label="canny control scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=0.4, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=99999999, | |
| step=1, | |
| value=0, | |
| ) | |
| seed = gr.Slider( | |
| label="lora_scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=0.7, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Column(): | |
| gallery = gr.Gallery(label="Generated Images") | |
| submit.click( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=generate_image, | |
| inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name], | |
| outputs=[gallery] | |
| ) | |
| # use_lcm.input( | |
| # fn=toggle_lcm_ui, | |
| # inputs=[use_lcm], | |
| # outputs=[num_steps, guidance_scale], | |
| # queue=False, | |
| # ) | |
| # gr.Examples( | |
| # examples=get_example(), | |
| # inputs=[img_file], | |
| # run_on_click=True, | |
| # fn=run_example, | |
| # outputs=[gallery], | |
| # ) | |
| gr.Markdown(Footer) | |
| demo.launch() |