synth / app.py
edbeeching
add auth
ab5bf76
raw
history blame
16.7 kB
import gradio as gr
from dataclasses import dataclass
import os
from supabase import create_client, Client
from supabase.client import ClientOptions
from enum import Enum
from datasets import get_dataset_infos
from transformers import AutoConfig
from huggingface_hub import whoami
from typing import Optional, List, Tuple, Union
"""
Still TODO:
- validate the user is PRO
- check the output dataset token is valid (hardcoded for now as a secret)
- validate max model params
"""
def verify_pro_status(token: Optional[Union[gr.OAuthToken, str]]) -> bool:
"""Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
if not token:
return False
if isinstance(token, gr.OAuthToken):
token_str = token.token
elif isinstance(token, str):
token_str = token
else:
return False
try:
user_info = whoami(token=token_str)
return (
user_info.get("isPro", False) or
any(org.get("isEnterprise", False) for org in user_info.get("orgs", []))
)
except Exception as e:
print(f"Could not verify user's PRO/Enterprise status: {e}")
return False
class GenerationStatus(Enum):
PENDING = "PENDING"
RUNNING = "RUNNING"
COMPLETED = "COMPLETED"
FAILED = "FAILED"
MAX_SAMPLES = 10000 # max number of samples in the input dataset
MAX_TOKENS = 8192
MAX_MODEL_PARAMS = 20_000_000_000 # 20 billion parameters (for now)
@dataclass
class GenerationRequest:
id: str
created_at: str
status: GenerationStatus
input_dataset_name: str
input_dataset_config: str
input_dataset_split: str
output_dataset_name: str
prompt_column: str
model_name_or_path: str
model_revision: str
model_token: str | None
system_prompt: str | None
max_tokens: int
temperature: float
top_k: int
top_p: float
input_dataset_token: str | None
output_dataset_token: str
username: str
email: str
num_output_examples: int
private: bool = False
num_retries: int = 0
def validate_request(request: GenerationRequest) -> GenerationRequest:
# checks that the request is valid
# - input dataset exists and can be accessed with the provided token
try:
input_dataset_info = get_dataset_infos(request.input_dataset_name, token=request.input_dataset_token)[request.input_dataset_config]
except Exception as e:
raise Exception(f"Dataset {request.input_dataset_name} does not exist or cannot be accessed with the provided token.")
# check that the input dataset split exists
if request.input_dataset_split not in input_dataset_info.splits:
raise Exception(f"Dataset split {request.input_dataset_split} does not exist in dataset {request.input_dataset_name}. Available splits: {list(input_dataset_info.splits.keys())}")
# if num_output_examples is 0, set it to the number of examples in the input dataset split
if request.num_output_examples == 0:
request.num_output_examples = input_dataset_info.splits[request.input_dataset_split].num_examples
else:
if request.num_output_examples > input_dataset_info.splits[request.input_dataset_split].num_examples:
raise Exception(f"Requested number of output examples {request.num_output_examples} exceeds the number of examples in the input dataset split {input_dataset_info.splits[request.input_dataset_split].num_examples}.")
request.input_dataset_split = f"{request.input_dataset_split}[:{request.num_output_examples}]"
if request.num_output_examples > MAX_SAMPLES:
raise Exception(f"Requested number of output examples {request.num_output_examples} exceeds the max limit of {MAX_SAMPLES}.")
# check the prompt column exists in the dataset
if request.prompt_column not in input_dataset_info.features:
raise Exception(f"Prompt column {request.prompt_column} does not exist in dataset {request.input_dataset_name}. Available columns: {list(input_dataset_info.features.keys())}")
# check the models exists
try:
model_config = AutoConfig.from_pretrained(request.model_name_or_path, revision=request.model_revision, token=request.model_token)
except Exception as e:
print(e)
raise Exception(f"Model {request.model_name_or_path} revision {request.model_revision} does not exist or cannot be accessed with the provided token.")
# check the model max position embeddings is greater than the requested max tokens and less than MAX_TOKENS
if model_config.max_position_embeddings < request.max_tokens:
raise Exception(f"Model {request.model_name_or_path} max position embeddings {model_config.max_position_embeddings} is less than the requested max tokens {request.max_tokens}.")
if request.max_tokens > MAX_TOKENS:
raise Exception(f"Requested max tokens {request.max_tokens} exceeds the limit of {MAX_TOKENS}.")
# check sampling parameters are valid
if request.temperature < 0.0 or request.temperature > 2.0:
raise Exception("Temperature must be between 0.0 and 2.0")
if request.top_k < 1 or request.top_k > 100:
raise Exception("Top K must be between 1 and 100")
if request.top_p < 0.0 or request.top_p > 1.0:
raise Exception("Top P must be between 0.0 and 1.0")
# check valid email address TODO: use py3-validate-email https://stackoverflow.com/questions/8022530/how-to-check-for-valid-email-address
if "@" not in request.email or "." not in request.email.split("@")[-1]:
raise Exception("Invalid email address")
return request
def add_request_to_db(request: GenerationRequest):
url: str = os.getenv("SUPABASE_URL")
key: str = os.getenv("SUPABASE_KEY")
try:
supabase: Client = create_client(
url,
key,
options=ClientOptions(
postgrest_client_timeout=10,
storage_client_timeout=10,
schema="public",
)
)
data = {
"status": request.status.value,
"input_dataset_name": request.input_dataset_name,
"input_dataset_config": request.input_dataset_config,
"input_dataset_split": request.input_dataset_split,
"output_dataset_name": request.output_dataset_name,
"prompt_column": request.prompt_column,
"model_name_or_path": request.model_name_or_path,
"model_revision": request.model_revision,
"model_token": request.model_token,
"system_prompt": request.system_prompt,
"max_tokens": request.max_tokens,
"temperature": request.temperature,
"top_k": request.top_k,
"top_p": request.top_p,
"input_dataset_token": request.input_dataset_token,
"output_dataset_token": request.output_dataset_token,
"username": request.username,
"email": request.email,
"num_output_examples": request.num_output_examples,
"private": request.private,
}
supabase.table("gen-requests").insert(data).execute()
except Exception as e:
raise Exception("Failed to add request to database")
def main():
with gr.Blocks(title="Synthetic Data Generation") as demo:
gr.HTML("<h3 style='text-align:center'>Hugging Face PRO users can use the Synthetic generation service. <a href='http://huggingface.co/subscribe/pro?source=synthetic-data-universe' target='_blank'>Subscribe to PRO</a></h3>", elem_id="sub_title")
pro_message = gr.Markdown(visible=False)
main_interface = gr.Column(visible=False)
with main_interface:
with gr.Group():
with gr.Row():
gr.Markdown("# Synthetic Data Generation Request")
with gr.Row():
gr.Markdown("""
Welcome to the Synthetic Data Generation service! This tool allows you to generate synthetic data using large language models. Generation is FREE for Hugging Face PRO users and uses idle GPUs on the HF science cluster.\n
Outputs from this service will be PUBLIC and available on the Hugging Face Hub under the organization [synthetic-data-universe](https://huggingface.co/synthetic-data-universe).\n
""")
with gr.Group():
with gr.Row():
gr.Markdown("""
**How it works:**
1. Provide an input dataset with prompts
2. Select a public language model for generation
3. Configure generation parameters
4. Submit your request.
""")
gr.Markdown("""
**Requirements:**
- Input dataset must be publicly accessible (for now)
- Model must be accessible (public and note gated, for now)
- Maximum 10,000 samples per dataset (for now)
- Maximum of 8192 generation tokens (for now)
""")
with gr.Group():
gr.Markdown("## Dataset information")
with gr.Column():
with gr.Row():
input_dataset_name = gr.Textbox(label="Input Dataset Name", placeholder="e.g., simplescaling/s1K-1.1")
input_dataset_split = gr.Textbox(label="Input Dataset Split", value="train", placeholder="e.g., train, test, validation")
input_dataset_config = gr.Textbox(label="Input Dataset Config", value="default", placeholder="e.g., default, custom")
prompt_column = gr.Textbox(label="Prompt Column", placeholder="e.g., text, prompt, question")
with gr.Column():
with gr.Row():
output_dataset_name = gr.Textbox(label="Output Dataset Name", placeholder="e.g., my-generated-dataset, must be unique. Will be created under the org 'synthetic-data-universe'")
num_output_samples = gr.Slider(label="Number of samples, leave as '0' for all", value=0, minimum=0, maximum=MAX_SAMPLES, step=1)
with gr.Group():
gr.Markdown("## Model information")
with gr.Column():
with gr.Row():
model_name_or_path = gr.Textbox(label="Model Name or Path", placeholder="e.g., Qwen/Qwen3-4B-Instruct-2507")
model_revision = gr.Textbox(label="Model Revision", value="main", placeholder="e.g., main, v1.0")
# model_token = gr.Textbox(label="Model Token (Optional)", type="password", placeholder="Your HF token with read/write access to the model...")
with gr.Group():
gr.Markdown("## Generation Parameters")
with gr.Row():
with gr.Column():
with gr.Row():
max_tokens = gr.Slider(label="Max Tokens", value=512, minimum=256, maximum=MAX_TOKENS, step=256)
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=2.0, value=0.7, step=0.1)
with gr.Row():
top_k = gr.Slider(label="Top K", value=50, minimum=5, maximum=100, step=5)
top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.95, step=0.05)
with gr.Row():
system_prompt = gr.Textbox(label="System Prompt (Optional)", lines=3, placeholder="Optional system prompt... e.g., You are a helpful assistant.")
with gr.Group():
gr.Markdown("## User Information, for notification when your job is completed (still TODO)")
with gr.Row():
with gr.Column():
with gr.Row():
email = gr.Textbox(label="Email", placeholder="your.email@example.com")
# with gr.Row():
# input_dataset_token = gr.Textbox(label="Input dataset token", type="password", placeholder="Your HF token with read access to the input dataset, leave blank if public dataset")
# output_dataset_token = gr.Textbox(label="Output dataset token", type="password", placeholder="Your HF token with write access to the output dataset")
submit_btn = gr.Button("Submit Generation Request", variant="primary")
output_status = gr.Textbox(label="Status", interactive=False)
def submit_request(input_dataset_name, input_split, input_dataset_config, output_dataset_name, prompt_col, model_name, model_rev, sys_prompt,
max_tok, temp, top_k_val, top_p_val, email_addr, num_output_samples):
MASTER_ORG = "synthetic-data-universe/"
model_token = None # This is currently not supported
input_dataset_token = None # This is currently not supported
output_dataset_token = os.getenv("OUTPUT_DATASET_TOKEN")
try:
request = GenerationRequest(
id="", # Will be generated when adding to the database
created_at="", # Will be set when adding to the database
status=GenerationStatus.PENDING,
input_dataset_name=input_dataset_name,
input_dataset_split=input_split,
input_dataset_config=input_dataset_config,
output_dataset_name=MASTER_ORG + output_dataset_name,
prompt_column=prompt_col,
model_name_or_path=model_name,
model_revision=model_rev,
model_token=model_token if model_token else None,
system_prompt=sys_prompt if sys_prompt else None,
max_tokens=int(max_tok),
temperature=temp,
top_k=int(top_k_val),
top_p=top_p_val,
input_dataset_token=input_dataset_token if input_dataset_token else None,
output_dataset_token=output_dataset_token,
num_output_examples=num_output_samples, # will be set after validating the input dataset
username="user",
email=email_addr
)
# check the input dataset exists and can be accessed with the provided token
request = validate_request(request)
add_request_to_db(request)
return "Request submitted successfully!"
except Exception as e:
return f"Error: {str(e)}"
submit_btn.click(
submit_request,
inputs=[input_dataset_name, input_dataset_split, input_dataset_config, output_dataset_name, prompt_column, model_name_or_path,
model_revision, system_prompt, max_tokens, temperature, top_k, top_p, email, num_output_samples],
outputs=output_status
)
def control_access(profile: Optional[gr.OAuthProfile] = None, oauth_token: Optional[gr.OAuthToken] = None):
if not profile: return gr.update(visible=False), gr.update(visible=False)
if verify_pro_status(oauth_token): return gr.update(visible=True), gr.update(visible=False)
else:
message = (
"## ✨ Exclusive Access for PRO Users\n\n"
"Thank you for your interest! This app is available exclusively for our Hugging Face **PRO** members.\n\n"
"To unlock this and many other cool stuff, please consider upgrading your account.\n\n"
"### [**Become a PRO Today!**](http://huggingface.co/subscribe/pro?source=synthetic-data-universe)"
)
return gr.update(visible=False), gr.update(visible=True, value=message)
demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])
demo.queue(max_size=None, default_concurrency_limit=None).launch(show_error=True)
if __name__ == "__main__":
main()