Spaces:
Sleeping
Sleeping
edbeeching
commited on
Commit
·
b26773a
1
Parent(s):
a2a9a72
add gen param cache
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from supabase import create_client, Client
|
|
| 6 |
from supabase.client import ClientOptions
|
| 7 |
from enum import Enum
|
| 8 |
from datasets import get_dataset_infos
|
| 9 |
-
from transformers import AutoConfig
|
| 10 |
from huggingface_hub import whoami
|
| 11 |
from typing import Optional, Union
|
| 12 |
|
|
@@ -17,41 +17,6 @@ from typing import Optional, Union
|
|
| 17 |
- validate max model params
|
| 18 |
"""
|
| 19 |
|
| 20 |
-
SUPPORTED_MODELS = [
|
| 21 |
-
"Qwen/Qwen3-4B-Instruct-2507",
|
| 22 |
-
"Qwen/Qwen3-30B-A3B-Instruct-2507",
|
| 23 |
-
"meta-llama/Llama-3.2-1B-Instruct",
|
| 24 |
-
"meta-llama/Llama-3.2-3B-Instruct",
|
| 25 |
-
"baidu/ERNIE-4.5-21B-A3B-Thinking",
|
| 26 |
-
"LLM360/K2-Think",
|
| 27 |
-
"openai/gpt-oss-20b",
|
| 28 |
-
]
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def verify_pro_status(token: Optional[Union[gr.OAuthToken, str]]) -> bool:
|
| 32 |
-
"""Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
|
| 33 |
-
if not token:
|
| 34 |
-
return False
|
| 35 |
-
|
| 36 |
-
if isinstance(token, gr.OAuthToken):
|
| 37 |
-
token_str = token.token
|
| 38 |
-
elif isinstance(token, str):
|
| 39 |
-
token_str = token
|
| 40 |
-
else:
|
| 41 |
-
return False
|
| 42 |
-
|
| 43 |
-
try:
|
| 44 |
-
user_info = whoami(token=token_str)
|
| 45 |
-
return (
|
| 46 |
-
user_info.get("isPro", False) or
|
| 47 |
-
any(org.get("isEnterprise", False) for org in user_info.get("orgs", []))
|
| 48 |
-
)
|
| 49 |
-
except Exception as e:
|
| 50 |
-
print(f"Could not verify user's PRO/Enterprise status: {e}")
|
| 51 |
-
return False
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
class GenerationStatus(Enum):
|
| 56 |
PENDING = "PENDING"
|
| 57 |
RUNNING = "RUNNING"
|
|
@@ -64,6 +29,9 @@ MAX_SAMPLES_FREE = 100 # max number of samples for free users
|
|
| 64 |
MAX_TOKENS = 8192
|
| 65 |
MAX_MODEL_PARAMS = 20_000_000_000 # 20 billion parameters (for now)
|
| 66 |
|
|
|
|
|
|
|
|
|
|
| 67 |
@dataclass
|
| 68 |
class GenerationRequest:
|
| 69 |
id: str
|
|
@@ -89,6 +57,166 @@ class GenerationRequest:
|
|
| 89 |
num_output_examples: int
|
| 90 |
private: bool = False
|
| 91 |
num_retries: int = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
def validate_request(request: GenerationRequest, oauth_token: Optional[Union[gr.OAuthToken, str]] = None) -> GenerationRequest:
|
| 94 |
# checks that the request is valid
|
|
@@ -401,6 +529,11 @@ def get_generation_stats_safe():
|
|
| 401 |
|
| 402 |
|
| 403 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
with gr.Blocks(title="Synthetic Data Generation") as demo:
|
| 405 |
gr.HTML("<h3 style='text-align:center'>Generate synthetic data with AI models. Free to use! Sign up for PRO benefits (10k samples vs 100). <a href='http://huggingface.co/subscribe/pro?source=synthetic-data-universe' target='_blank'>Upgrade to PRO</a></h3>", elem_id="sub_title")
|
| 406 |
|
|
@@ -659,6 +792,13 @@ def main():
|
|
| 659 |
outputs=[input_dataset_config, input_dataset_split, prompt_column, output_dataset_name, num_output_samples, load_info_status]
|
| 660 |
)
|
| 661 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 662 |
submit_btn.click(
|
| 663 |
submit_request,
|
| 664 |
inputs=[input_dataset_name, input_dataset_split, input_dataset_config, output_dataset_name, prompt_column, model_name_or_path,
|
|
|
|
| 6 |
from supabase.client import ClientOptions
|
| 7 |
from enum import Enum
|
| 8 |
from datasets import get_dataset_infos
|
| 9 |
+
from transformers import AutoConfig, GenerationConfig
|
| 10 |
from huggingface_hub import whoami
|
| 11 |
from typing import Optional, Union
|
| 12 |
|
|
|
|
| 17 |
- validate max model params
|
| 18 |
"""
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
class GenerationStatus(Enum):
|
| 21 |
PENDING = "PENDING"
|
| 22 |
RUNNING = "RUNNING"
|
|
|
|
| 29 |
MAX_TOKENS = 8192
|
| 30 |
MAX_MODEL_PARAMS = 20_000_000_000 # 20 billion parameters (for now)
|
| 31 |
|
| 32 |
+
# Cache for model generation parameters
|
| 33 |
+
MODEL_GEN_PARAMS_CACHE = {}
|
| 34 |
+
|
| 35 |
@dataclass
|
| 36 |
class GenerationRequest:
|
| 37 |
id: str
|
|
|
|
| 57 |
num_output_examples: int
|
| 58 |
private: bool = False
|
| 59 |
num_retries: int = 0
|
| 60 |
+
|
| 61 |
+
SUPPORTED_MODELS = [
|
| 62 |
+
"Qwen/Qwen3-4B-Instruct-2507",
|
| 63 |
+
"Qwen/Qwen3-30B-A3B-Instruct-2507",
|
| 64 |
+
"meta-llama/Llama-3.2-1B-Instruct",
|
| 65 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
| 66 |
+
"baidu/ERNIE-4.5-21B-A3B-Thinking",
|
| 67 |
+
"LLM360/K2-Think",
|
| 68 |
+
"openai/gpt-oss-20b",
|
| 69 |
+
]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def fetch_model_generation_params(model_name: str) -> dict:
|
| 73 |
+
"""Fetch generation parameters from model's generation config on the hub"""
|
| 74 |
+
default_params = {
|
| 75 |
+
"max_tokens": 1024,
|
| 76 |
+
"temperature": 0.7,
|
| 77 |
+
"top_k": 50,
|
| 78 |
+
"top_p": 0.95
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
try:
|
| 82 |
+
print(f"Attempting to fetch generation config for: {model_name}")
|
| 83 |
+
|
| 84 |
+
# Try to load the generation config
|
| 85 |
+
try:
|
| 86 |
+
gen_config = GenerationConfig.from_pretrained(model_name, force_download=False)
|
| 87 |
+
print(f"Successfully loaded generation config for {model_name}")
|
| 88 |
+
print(f"Config attributes: {dir(gen_config)}")
|
| 89 |
+
except Exception as e:
|
| 90 |
+
print(f"Failed to load GenerationConfig for {model_name}: {e}")
|
| 91 |
+
# Try loading from model config instead
|
| 92 |
+
try:
|
| 93 |
+
from transformers import AutoConfig
|
| 94 |
+
model_config = AutoConfig.from_pretrained(model_name, force_download=False)
|
| 95 |
+
print(f"Loaded AutoConfig for {model_name} instead")
|
| 96 |
+
|
| 97 |
+
# Use some reasonable defaults based on model type
|
| 98 |
+
if "qwen" in model_name.lower():
|
| 99 |
+
return {"max_tokens": 2048, "temperature": 0.7, "top_k": 50, "top_p": 0.8}
|
| 100 |
+
elif "llama" in model_name.lower():
|
| 101 |
+
return {"max_tokens": 2048, "temperature": 0.6, "top_k": 40, "top_p": 0.9}
|
| 102 |
+
elif "ernie" in model_name.lower():
|
| 103 |
+
return {"max_tokens": 1024, "temperature": 0.7, "top_k": 50, "top_p": 0.95}
|
| 104 |
+
else:
|
| 105 |
+
return default_params
|
| 106 |
+
|
| 107 |
+
except Exception as e2:
|
| 108 |
+
print(f"Failed to load any config for {model_name}: {e2}")
|
| 109 |
+
return default_params
|
| 110 |
+
|
| 111 |
+
# Extract relevant parameters with fallbacks to defaults
|
| 112 |
+
params = {
|
| 113 |
+
"max_tokens": getattr(gen_config, 'max_new_tokens', None) or getattr(gen_config, 'max_length', default_params["max_tokens"]),
|
| 114 |
+
"temperature": getattr(gen_config, 'temperature', default_params["temperature"]),
|
| 115 |
+
"top_k": getattr(gen_config, 'top_k', default_params["top_k"]),
|
| 116 |
+
"top_p": getattr(gen_config, 'top_p', default_params["top_p"])
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
# Ensure parameters are within valid ranges
|
| 120 |
+
params["max_tokens"] = max(256, min(params["max_tokens"], MAX_TOKENS))
|
| 121 |
+
params["temperature"] = max(0.0, min(params["temperature"], 2.0))
|
| 122 |
+
params["top_k"] = max(5, min(params["top_k"], 100))
|
| 123 |
+
params["top_p"] = max(0.0, min(params["top_p"], 1.0))
|
| 124 |
+
|
| 125 |
+
print(f"Final params for {model_name}: {params}")
|
| 126 |
+
return params
|
| 127 |
+
|
| 128 |
+
except Exception as e:
|
| 129 |
+
print(f"Could not fetch generation config for {model_name}: {e}")
|
| 130 |
+
return default_params
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def update_generation_params(model_name: str):
|
| 134 |
+
"""Update generation parameters based on selected model"""
|
| 135 |
+
global MODEL_GEN_PARAMS_CACHE
|
| 136 |
+
|
| 137 |
+
print(f"Updating generation parameters for model: {model_name}")
|
| 138 |
+
print(f"Cache is empty: {len(MODEL_GEN_PARAMS_CACHE) == 0}")
|
| 139 |
+
print(f"Current cache keys: {list(MODEL_GEN_PARAMS_CACHE.keys())}")
|
| 140 |
+
|
| 141 |
+
# If cache is empty, try to populate it now
|
| 142 |
+
if len(MODEL_GEN_PARAMS_CACHE) == 0:
|
| 143 |
+
print("Cache is empty, attempting to populate now...")
|
| 144 |
+
cache_all_model_params()
|
| 145 |
+
|
| 146 |
+
if model_name in MODEL_GEN_PARAMS_CACHE:
|
| 147 |
+
params = MODEL_GEN_PARAMS_CACHE[model_name]
|
| 148 |
+
print(f"Found cached params for {model_name}: {params}")
|
| 149 |
+
return (
|
| 150 |
+
gr.update(value=params["max_tokens"]), # max_tokens
|
| 151 |
+
gr.update(value=params["temperature"]), # temperature
|
| 152 |
+
gr.update(value=params["top_k"]), # top_k
|
| 153 |
+
gr.update(value=params["top_p"]) # top_p
|
| 154 |
+
)
|
| 155 |
+
else:
|
| 156 |
+
# Fallback to defaults if model not in cache
|
| 157 |
+
print(f"Model {model_name} not found in cache, using defaults")
|
| 158 |
+
return (
|
| 159 |
+
gr.update(value=1024), # max_tokens
|
| 160 |
+
gr.update(value=0.7), # temperature
|
| 161 |
+
gr.update(value=50), # top_k
|
| 162 |
+
gr.update(value=0.95) # top_p
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def cache_all_model_params():
|
| 167 |
+
"""Cache generation parameters for all supported models at startup"""
|
| 168 |
+
global MODEL_GEN_PARAMS_CACHE
|
| 169 |
+
|
| 170 |
+
print(f"Starting to cache parameters for {len(SUPPORTED_MODELS)} models...")
|
| 171 |
+
print(f"Supported models: {SUPPORTED_MODELS}")
|
| 172 |
+
|
| 173 |
+
for model_name in SUPPORTED_MODELS:
|
| 174 |
+
try:
|
| 175 |
+
print(f"Processing model: {model_name}")
|
| 176 |
+
params = fetch_model_generation_params(model_name)
|
| 177 |
+
MODEL_GEN_PARAMS_CACHE[model_name] = params
|
| 178 |
+
print(f"Successfully cached params for {model_name}: {params}")
|
| 179 |
+
except Exception as e:
|
| 180 |
+
print(f"Exception while caching params for {model_name}: {e}")
|
| 181 |
+
# Use default parameters if caching fails
|
| 182 |
+
default_params = {
|
| 183 |
+
"max_tokens": 1024,
|
| 184 |
+
"temperature": 0.7,
|
| 185 |
+
"top_k": 50,
|
| 186 |
+
"top_p": 0.95
|
| 187 |
+
}
|
| 188 |
+
MODEL_GEN_PARAMS_CACHE[model_name] = default_params
|
| 189 |
+
print(f"Using default params for {model_name}: {default_params}")
|
| 190 |
+
|
| 191 |
+
print(f"Caching complete. Final cache contents:")
|
| 192 |
+
for model, params in MODEL_GEN_PARAMS_CACHE.items():
|
| 193 |
+
print(f" {model}: {params}")
|
| 194 |
+
print(f"Cache size: {len(MODEL_GEN_PARAMS_CACHE)} models")
|
| 195 |
+
|
| 196 |
+
def verify_pro_status(token: Optional[Union[gr.OAuthToken, str]]) -> bool:
|
| 197 |
+
"""Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
|
| 198 |
+
if not token:
|
| 199 |
+
return False
|
| 200 |
+
|
| 201 |
+
if isinstance(token, gr.OAuthToken):
|
| 202 |
+
token_str = token.token
|
| 203 |
+
elif isinstance(token, str):
|
| 204 |
+
token_str = token
|
| 205 |
+
else:
|
| 206 |
+
return False
|
| 207 |
+
|
| 208 |
+
try:
|
| 209 |
+
user_info = whoami(token=token_str)
|
| 210 |
+
return (
|
| 211 |
+
user_info.get("isPro", False) or
|
| 212 |
+
any(org.get("isEnterprise", False) for org in user_info.get("orgs", []))
|
| 213 |
+
)
|
| 214 |
+
except Exception as e:
|
| 215 |
+
print(f"Could not verify user's PRO/Enterprise status: {e}")
|
| 216 |
+
return False
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|
| 220 |
|
| 221 |
def validate_request(request: GenerationRequest, oauth_token: Optional[Union[gr.OAuthToken, str]] = None) -> GenerationRequest:
|
| 222 |
# checks that the request is valid
|
|
|
|
| 529 |
|
| 530 |
|
| 531 |
def main():
|
| 532 |
+
# Cache model generation parameters at startup
|
| 533 |
+
print("Caching model generation parameters...")
|
| 534 |
+
cache_all_model_params()
|
| 535 |
+
print("Model parameter caching complete.")
|
| 536 |
+
|
| 537 |
with gr.Blocks(title="Synthetic Data Generation") as demo:
|
| 538 |
gr.HTML("<h3 style='text-align:center'>Generate synthetic data with AI models. Free to use! Sign up for PRO benefits (10k samples vs 100). <a href='http://huggingface.co/subscribe/pro?source=synthetic-data-universe' target='_blank'>Upgrade to PRO</a></h3>", elem_id="sub_title")
|
| 539 |
|
|
|
|
| 792 |
outputs=[input_dataset_config, input_dataset_split, prompt_column, output_dataset_name, num_output_samples, load_info_status]
|
| 793 |
)
|
| 794 |
|
| 795 |
+
# Wire up model change to update generation parameters
|
| 796 |
+
model_name_or_path.change(
|
| 797 |
+
update_generation_params,
|
| 798 |
+
inputs=[model_name_or_path],
|
| 799 |
+
outputs=[max_tokens, temperature, top_k, top_p]
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
submit_btn.click(
|
| 803 |
submit_request,
|
| 804 |
inputs=[input_dataset_name, input_dataset_split, input_dataset_config, output_dataset_name, prompt_column, model_name_or_path,
|