Spaces:
Sleeping
Sleeping
Update utils.py
Browse files
utils.py
CHANGED
|
@@ -2,32 +2,28 @@ from transformers import AutoTokenizer
|
|
| 2 |
from optimum.onnxruntime import ORTModelForCausalLM, ORTOptions
|
| 3 |
from config import MODEL_NAME, MAX_NEW_TOKENS, TEMPERATURE, MAX_INPUT_LENGTH
|
| 4 |
|
| 5 |
-
# 模型加载:CPU专属极速配置(INT8量化+内存优化,无无效计算)
|
| 6 |
options = ORTOptions(
|
| 7 |
-
enable_int8=True,
|
| 8 |
-
enable_dynamic_quantization=True,
|
| 9 |
-
enable_cpu_mem_optimization=True,
|
| 10 |
-
enable_flash_attention=False,
|
| 11 |
-
enable_sequential_execution=True
|
| 12 |
)
|
| 13 |
|
| 14 |
-
# 加载ONNX模型(明确指定CPU,跳过设备检测)
|
| 15 |
model = ORTModelForCausalLM.from_pretrained(
|
| 16 |
MODEL_NAME,
|
| 17 |
from_transformers=True,
|
| 18 |
ort_options=options,
|
| 19 |
-
device_map="cpu",
|
| 20 |
-
trust_remote_code=True
|
| 21 |
)
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 23 |
MODEL_NAME,
|
| 24 |
trust_remote_code=True,
|
| 25 |
-
padding_side="left"
|
| 26 |
)
|
| 27 |
|
| 28 |
-
# 推理函数(和模型配置对齐,无多余计算)
|
| 29 |
def generate_response(input_texts):
|
| 30 |
-
# 输入处理:精简token,避免冗余
|
| 31 |
inputs = tokenizer(
|
| 32 |
input_texts,
|
| 33 |
return_tensors="pt",
|
|
@@ -36,18 +32,16 @@ def generate_response(input_texts):
|
|
| 36 |
max_length=MAX_INPUT_LENGTH,
|
| 37 |
add_special_tokens=True
|
| 38 |
)
|
| 39 |
-
|
| 40 |
-
# 生成逻辑:极速模式(单beam+早停,无随机采样)
|
| 41 |
outputs = model.generate(
|
| 42 |
**inputs,
|
| 43 |
max_new_tokens=MAX_NEW_TOKENS,
|
| 44 |
temperature=TEMPERATURE,
|
| 45 |
-
do_sample=False,
|
| 46 |
-
num_beams=1,
|
| 47 |
-
early_stopping=True,
|
| 48 |
-
use_cache=True,
|
| 49 |
-
pad_token_id=tokenizer.eos_token_id
|
| 50 |
)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
| 2 |
from optimum.onnxruntime import ORTModelForCausalLM, ORTOptions
|
| 3 |
from config import MODEL_NAME, MAX_NEW_TOKENS, TEMPERATURE, MAX_INPUT_LENGTH
|
| 4 |
|
|
|
|
| 5 |
options = ORTOptions(
|
| 6 |
+
enable_int8=True,
|
| 7 |
+
enable_dynamic_quantization=True,
|
| 8 |
+
enable_cpu_mem_optimization=True,
|
| 9 |
+
enable_flash_attention=False,
|
| 10 |
+
enable_sequential_execution=True
|
| 11 |
)
|
| 12 |
|
|
|
|
| 13 |
model = ORTModelForCausalLM.from_pretrained(
|
| 14 |
MODEL_NAME,
|
| 15 |
from_transformers=True,
|
| 16 |
ort_options=options,
|
| 17 |
+
device_map="cpu",
|
| 18 |
+
trust_remote_code=True
|
| 19 |
)
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 21 |
MODEL_NAME,
|
| 22 |
trust_remote_code=True,
|
| 23 |
+
padding_side="left"
|
| 24 |
)
|
| 25 |
|
|
|
|
| 26 |
def generate_response(input_texts):
|
|
|
|
| 27 |
inputs = tokenizer(
|
| 28 |
input_texts,
|
| 29 |
return_tensors="pt",
|
|
|
|
| 32 |
max_length=MAX_INPUT_LENGTH,
|
| 33 |
add_special_tokens=True
|
| 34 |
)
|
|
|
|
|
|
|
| 35 |
outputs = model.generate(
|
| 36 |
**inputs,
|
| 37 |
max_new_tokens=MAX_NEW_TOKENS,
|
| 38 |
temperature=TEMPERATURE,
|
| 39 |
+
do_sample=False,
|
| 40 |
+
num_beams=1,
|
| 41 |
+
early_stopping=True,
|
| 42 |
+
use_cache=True,
|
| 43 |
+
pad_token_id=tokenizer.eos_token_id
|
| 44 |
)
|
| 45 |
+
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 46 |
+
|
| 47 |
+
__all__ = ["generate_response", "tokenizer"]
|