Spaces:
Runtime error
Runtime error
taskswithcode
commited on
Commit
·
e227e49
1
Parent(s):
57eed52
Fixes
Browse files- app.py +44 -22
- doc_app_models.json +5 -5
app.py
CHANGED
|
@@ -34,13 +34,11 @@ INFO_URL = "http://www.taskswithcode.com/stats/"
|
|
| 34 |
|
| 35 |
|
| 36 |
def get_views(action):
|
| 37 |
-
print("in get views",action)
|
| 38 |
ret_val = 0
|
| 39 |
hostname = socket.gethostname()
|
| 40 |
ip_address = socket.gethostbyname(hostname)
|
| 41 |
if ("view_count" not in st.session_state):
|
| 42 |
try:
|
| 43 |
-
print("inside get views")
|
| 44 |
app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
|
| 45 |
res = requests.post(INFO_URL, json = app_info).json()
|
| 46 |
print(res)
|
|
@@ -61,7 +59,8 @@ def get_views(action):
|
|
| 61 |
|
| 62 |
def construct_model_info_for_display(model_names):
|
| 63 |
options_arr = []
|
| 64 |
-
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b></div>"
|
|
|
|
| 65 |
for node in model_names:
|
| 66 |
options_arr .append(node["name"])
|
| 67 |
if (node["mark"] == "True"):
|
|
@@ -88,20 +87,19 @@ with col:
|
|
| 88 |
|
| 89 |
|
| 90 |
@st.experimental_memo
|
| 91 |
-
def load_model(model_name,
|
| 92 |
try:
|
| 93 |
ret_model = None
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
ret_model = obj_class()
|
| 98 |
-
ret_model.init_model(node["model"])
|
| 99 |
assert(ret_model is not None)
|
| 100 |
except Exception as e:
|
| 101 |
-
st.error("Unable to load model:" + model_name + " " + str(e))
|
| 102 |
pass
|
| 103 |
return ret_model
|
| 104 |
|
|
|
|
| 105 |
|
| 106 |
@st.experimental_memo
|
| 107 |
def cached_compute_similarity(sentences,_model,model_name,main_index):
|
|
@@ -117,18 +115,27 @@ def uncached_compute_similarity(sentences,_model,model_name,main_index):
|
|
| 117 |
#st.success("Similarity computation complete")
|
| 118 |
return results
|
| 119 |
|
|
|
|
| 120 |
def get_model_info(model_names,model_name):
|
| 121 |
for node in model_names:
|
| 122 |
if (model_name == node["name"]):
|
| 123 |
-
return node
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
def run_test(model_names,model_name,sentences,display_area,main_index,user_uploaded):
|
| 126 |
display_area.text("Loading model:" + model_name)
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
if ("Note" in model_info):
|
| 129 |
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
|
| 130 |
display_area.write(fail_link)
|
| 131 |
-
model = load_model(model_name,
|
| 132 |
display_area.text("Model " + model_name + " load complete")
|
| 133 |
try:
|
| 134 |
if (user_uploaded):
|
|
@@ -148,9 +155,10 @@ def run_test(model_names,model_name,sentences,display_area,main_index,user_uploa
|
|
| 148 |
|
| 149 |
|
| 150 |
|
| 151 |
-
def display_results(orig_sentences,main_index,results,response_info,app_mode):
|
| 152 |
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
|
| 153 |
-
|
|
|
|
| 154 |
pivot_name = "main sentence" if app_mode == SEM_SIMILARITY else "query"
|
| 155 |
main_sent += f"<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by {score_text}. Closest to furthest away from {pivot_name}</div>"
|
| 156 |
pivot_name = pivot_name[0].upper() + pivot_name[1:]
|
|
@@ -172,10 +180,14 @@ def display_results(orig_sentences,main_index,results,response_info,app_mode):
|
|
| 172 |
|
| 173 |
|
| 174 |
def init_session():
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
def app_main(app_mode,example_files,model_name_files):
|
| 181 |
init_session()
|
|
@@ -185,6 +197,7 @@ def app_main(app_mode,example_files,model_name_files):
|
|
| 185 |
model_names = json.load(fp)
|
| 186 |
curr_use_case = use_case[app_mode].split(".")[0]
|
| 187 |
st.markdown("<h5 style='text-align: center;'>Compare popular/state-of-the-art models for tasks using sentence embeddings</h5>", unsafe_allow_html=True)
|
|
|
|
| 188 |
st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for sentence embeddings<br/> • <a href=\'{use_case_url['1']}\' target='_blank'>{use_case['1']}</a><br/> • {use_case['2']}<br/> • {use_case['3']}<br/><i>This app illustrates <b>'{curr_use_case}'</b> use case</i></div>", unsafe_allow_html=True)
|
| 189 |
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views: {get_views('init')}</div>", unsafe_allow_html=True)
|
| 190 |
|
|
@@ -207,6 +220,9 @@ def app_main(app_mode,example_files,model_name_files):
|
|
| 207 |
selected_model = st.selectbox(label=selection_label,
|
| 208 |
options = options_arr, index=0, key = "twc_model")
|
| 209 |
st.write("")
|
|
|
|
|
|
|
|
|
|
| 210 |
if (app_mode == SEM_SIMILARITY):
|
| 211 |
main_index = st.number_input('Step 3. Enter index of sentence in file to make it the main sentence',value=1,min_value = 1)
|
| 212 |
else:
|
|
@@ -232,14 +248,20 @@ def app_main(app_mode,example_files,model_name_files):
|
|
| 232 |
if (len(sentences) > MAX_INPUT):
|
| 233 |
st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen")
|
| 234 |
sentences = sentences[:MAX_INPUT]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
st.session_state["model_name"] = selected_model
|
| 236 |
st.session_state["main_index"] = main_index
|
| 237 |
-
results = run_test(model_names,
|
| 238 |
display_area.empty()
|
| 239 |
with display_area.container():
|
| 240 |
device = 'GPU' if torch.cuda.is_available() else 'CPU'
|
| 241 |
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
|
| 242 |
-
|
|
|
|
|
|
|
| 243 |
#st.json(results)
|
| 244 |
st.download_button(
|
| 245 |
label="Download results as json",
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
def get_views(action):
|
|
|
|
| 37 |
ret_val = 0
|
| 38 |
hostname = socket.gethostname()
|
| 39 |
ip_address = socket.gethostbyname(hostname)
|
| 40 |
if ("view_count" not in st.session_state):
|
| 41 |
try:
|
|
|
|
| 42 |
app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
|
| 43 |
res = requests.post(INFO_URL, json = app_info).json()
|
| 44 |
print(res)
|
|
|
|
| 59 |
|
| 60 |
def construct_model_info_for_display(model_names):
|
| 61 |
options_arr = []
|
| 62 |
+
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/><i>These are either state-of-the-art or the most downloaded models on Huggingface</i></div>"
|
| 63 |
+
markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
|
| 64 |
for node in model_names:
|
| 65 |
options_arr .append(node["name"])
|
| 66 |
if (node["mark"] == "True"):
|
|
|
|
| 87 |
|
| 88 |
|
| 89 |
@st.experimental_memo
|
| 90 |
+
def load_model(model_name,model_class,load_model_name):
|
| 91 |
try:
|
| 92 |
ret_model = None
|
| 93 |
+
obj_class = globals()[model_class]
|
| 94 |
+
ret_model = obj_class()
|
| 95 |
+
ret_model.init_model(load_model_name)
|
|
|
|
|
|
|
| 96 |
assert(ret_model is not None)
|
| 97 |
except Exception as e:
|
| 98 |
+
st.error("Unable to load model:" + model_name + " " + load_model_name + " " + str(e))
|
| 99 |
pass
|
| 100 |
return ret_model
|
| 101 |
|
| 102 |
+
|
| 103 |
|
| 104 |
@st.experimental_memo
|
| 105 |
def cached_compute_similarity(sentences,_model,model_name,main_index):
|
|
|
|
| 115 |
#st.success("Similarity computation complete")
|
| 116 |
return results
|
| 117 |
|
| 118 |
+
DEFAULT_HF_MODEL = "sentence-transformers/paraphrase-MiniLM-L6-v2"
|
| 119 |
def get_model_info(model_names,model_name):
|
| 120 |
for node in model_names:
|
| 121 |
if (model_name == node["name"]):
|
| 122 |
+
return node,model_name
|
| 123 |
+
return get_model_info(model_names,DEFAULT_HF_MODEL)
|
| 124 |
+
|
| 125 |
|
| 126 |
+
def run_test(model_names,model_name,sentences,display_area,main_index,user_uploaded,custom_model):
|
| 127 |
display_area.text("Loading model:" + model_name)
|
| 128 |
+
#Note. model_name may get mapped to new name in the call below for custom models
|
| 129 |
+
orig_model_name = model_name
|
| 130 |
+
model_info,model_name = get_model_info(model_names,model_name)
|
| 131 |
+
if (model_name != orig_model_name):
|
| 132 |
+
load_model_name = orig_model_name
|
| 133 |
+
else:
|
| 134 |
+
load_model_name = model_info["model"]
|
| 135 |
if ("Note" in model_info):
|
| 136 |
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
|
| 137 |
display_area.write(fail_link)
|
| 138 |
+
model = load_model(model_name,model_info["class"],load_model_name)
|
| 139 |
display_area.text("Model " + model_name + " load complete")
|
| 140 |
try:
|
| 141 |
if (user_uploaded):
|
|
|
|
| 155 |
|
| 156 |
|
| 157 |
|
| 158 |
+
def display_results(orig_sentences,main_index,results,response_info,app_mode,model_name):
|
| 159 |
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
|
| 160 |
+
main_sent += f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">Showing results for model: <b>{model_name}</b></div>"
|
| 161 |
+
score_text = "cosine distance" if app_mode == SEM_SIMILARITY else "cosine distance/score"
|
| 162 |
pivot_name = "main sentence" if app_mode == SEM_SIMILARITY else "query"
|
| 163 |
main_sent += f"<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by {score_text}. Closest to furthest away from {pivot_name}</div>"
|
| 164 |
pivot_name = pivot_name[0].upper() + pivot_name[1:]
|
|
|
|
| 180 |
|
| 181 |
|
| 182 |
def init_session():
|
| 183 |
+
if ("model_name" not in st.session_state):
|
| 184 |
+
st.session_state["model_name"] = "ss_test"
|
| 185 |
+
st.session_state["download_ready"] = None
|
| 186 |
+
st.session_state["model_name"] = "ss_test"
|
| 187 |
+
st.session_state["main_index"] = 1
|
| 188 |
+
st.session_state["file_name"] = "default"
|
| 189 |
+
else:
|
| 190 |
+
print("Skipping init session")
|
| 191 |
|
| 192 |
def app_main(app_mode,example_files,model_name_files):
|
| 193 |
init_session()
|
|
|
|
| 197 |
model_names = json.load(fp)
|
| 198 |
curr_use_case = use_case[app_mode].split(".")[0]
|
| 199 |
st.markdown("<h5 style='text-align: center;'>Compare popular/state-of-the-art models for tasks using sentence embeddings</h5>", unsafe_allow_html=True)
|
| 200 |
+
st.markdown(f"<p style='font-size:14px; color: #4f4f4f; text-align: center'><i>Or compare your own model with state-of-the-art/popular models</p>", unsafe_allow_html=True)
|
| 201 |
st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for sentence embeddings<br/> • <a href=\'{use_case_url['1']}\' target='_blank'>{use_case['1']}</a><br/> • {use_case['2']}<br/> • {use_case['3']}<br/><i>This app illustrates <b>'{curr_use_case}'</b> use case</i></div>", unsafe_allow_html=True)
|
| 202 |
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views: {get_views('init')}</div>", unsafe_allow_html=True)
|
| 203 |
|
|
|
|
| 220 |
selected_model = st.selectbox(label=selection_label,
|
| 221 |
options = options_arr, index=0, key = "twc_model")
|
| 222 |
st.write("")
|
| 223 |
+
custom_model_selection = st.text_input("Model not listed above? Type any Huggingface semantic search model name ", "",key="custom_model")
|
| 224 |
+
hf_link_str = "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><a href='https://huggingface.co/models?pipeline_tag=sentence-similarity' target = '_blank'>List of Huggingface semantic search models</a><br/><br/><br/></div>"
|
| 225 |
+
st.markdown(hf_link_str, unsafe_allow_html=True)
|
| 226 |
if (app_mode == SEM_SIMILARITY):
|
| 227 |
main_index = st.number_input('Step 3. Enter index of sentence in file to make it the main sentence',value=1,min_value = 1)
|
| 228 |
else:
|
|
|
|
| 248 |
if (len(sentences) > MAX_INPUT):
|
| 249 |
st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen")
|
| 250 |
sentences = sentences[:MAX_INPUT]
|
| 251 |
+
if (len(custom_model_selection) != 0):
|
| 252 |
+
run_model = custom_model_selection
|
| 253 |
+
else:
|
| 254 |
+
run_model = selected_model
|
| 255 |
st.session_state["model_name"] = selected_model
|
| 256 |
st.session_state["main_index"] = main_index
|
| 257 |
+
results = run_test(model_names,run_model,sentences,display_area,main_index - 1,(uploaded_file is not None),(len(custom_model_selection) != 0))
|
| 258 |
display_area.empty()
|
| 259 |
with display_area.container():
|
| 260 |
device = 'GPU' if torch.cuda.is_available() else 'CPU'
|
| 261 |
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
|
| 262 |
+
if (len(custom_model_selection) != 0):
|
| 263 |
+
st.info("Custom model overrides model selection in step 2 above. So please clear the custom model text box to choose models from step 2")
|
| 264 |
+
display_results(sentences,main_index - 1,results,response_info,app_mode,run_model)
|
| 265 |
#st.json(results)
|
| 266 |
st.download_button(
|
| 267 |
label="Download results as json",
|
doc_app_models.json
CHANGED
|
@@ -30,7 +30,7 @@
|
|
| 30 |
"orig_author_url":"https://github.com/UKPLab",
|
| 31 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 32 |
"sota_info": {
|
| 33 |
-
"task":"Over 3.8 million downloads from
|
| 34 |
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
|
| 35 |
},
|
| 36 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
@@ -42,7 +42,7 @@
|
|
| 42 |
"orig_author_url":"https://github.com/UKPLab",
|
| 43 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 44 |
"sota_info": {
|
| 45 |
-
"task":"Over 2 million downloads from
|
| 46 |
"sota_link":"https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2"
|
| 47 |
},
|
| 48 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
@@ -54,7 +54,7 @@
|
|
| 54 |
"orig_author_url":"https://github.com/UKPLab",
|
| 55 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 56 |
"sota_info": {
|
| 57 |
-
"task":"Over 700,000 downloads from
|
| 58 |
"sota_link":"https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens"
|
| 59 |
},
|
| 60 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
@@ -66,7 +66,7 @@
|
|
| 66 |
"orig_author_url":"https://github.com/UKPLab",
|
| 67 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 68 |
"sota_info": {
|
| 69 |
-
"task":"Over 500,000 downloads from
|
| 70 |
"sota_link":"https://huggingface.co/sentence-transformers/all-mpnet-base-v2"
|
| 71 |
},
|
| 72 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
@@ -78,7 +78,7 @@
|
|
| 78 |
"orig_author_url":"https://github.com/UKPLab",
|
| 79 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 80 |
"sota_info": {
|
| 81 |
-
"task":"Over 500,000 downloads from
|
| 82 |
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2"
|
| 83 |
},
|
| 84 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
|
|
| 30 |
"orig_author_url":"https://github.com/UKPLab",
|
| 31 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 32 |
"sota_info": {
|
| 33 |
+
"task":"Over 3.8 million downloads from Huggingface",
|
| 34 |
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
|
| 35 |
},
|
| 36 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
|
|
| 42 |
"orig_author_url":"https://github.com/UKPLab",
|
| 43 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 44 |
"sota_info": {
|
| 45 |
+
"task":"Over 2 million downloads from Huggingface",
|
| 46 |
"sota_link":"https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2"
|
| 47 |
},
|
| 48 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
|
|
| 54 |
"orig_author_url":"https://github.com/UKPLab",
|
| 55 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 56 |
"sota_info": {
|
| 57 |
+
"task":"Over 700,000 downloads from Huggingface",
|
| 58 |
"sota_link":"https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens"
|
| 59 |
},
|
| 60 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
|
|
| 66 |
"orig_author_url":"https://github.com/UKPLab",
|
| 67 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 68 |
"sota_info": {
|
| 69 |
+
"task":"Over 500,000 downloads from Huggingface",
|
| 70 |
"sota_link":"https://huggingface.co/sentence-transformers/all-mpnet-base-v2"
|
| 71 |
},
|
| 72 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
|
|
| 78 |
"orig_author_url":"https://github.com/UKPLab",
|
| 79 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 80 |
"sota_info": {
|
| 81 |
+
"task":"Over 500,000 downloads from Huggingface",
|
| 82 |
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2"
|
| 83 |
},
|
| 84 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|