File size: 18,369 Bytes
1e81c91 7bc7ddb 1e81c91 7bc7ddb 1bcc194 563fa98 b54ff3c faaabaa 7bc7ddb af1098a 1e81c91 7bc7ddb 1e81c91 538a2c8 1e81c91 7bc7ddb f17376b 7bc7ddb faaabaa 7bc7ddb d3d6761 1e81c91 7bc7ddb 26df44c 1e81c91 0638730 1e81c91 7bc7ddb 1e81c91 a79ae89 f17376b a79ae89 3eb0102 9461e65 1bcc194 a79ae89 3f8b197 26df44c a79ae89 26df44c a79ae89 ff5d057 bc3f685 ff5d057 26df44c bc3f685 26df44c 1e81c91 05301e2 a79ae89 1c02ddb 2f349b2 1e81c91 1c02ddb a79ae89 1c02ddb a79ae89 1c02ddb b54ff3c a79ae89 1c02ddb a79ae89 1c02ddb a79ae89 26df44c 1c02ddb a79ae89 1c02ddb a79ae89 1c02ddb a79ae89 1bcc194 7bc7ddb b54ff3c a79ae89 538a2c8 a79ae89 2f349b2 4a614da a79ae89 1e81c91 a79ae89 563fa98 1bcc194 a79ae89 bc3f685 1bcc194 a79ae89 1bcc194 a79ae89 1bcc194 a79ae89 b54ff3c 1bcc194 a79ae89 1bcc194 a79ae89 b54ff3c a79ae89 f17376b b54ff3c 1bcc194 a79ae89 b54ff3c af1098a 7bc7ddb af1098a a79ae89 7bc7ddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import os
import asyncio
import httpx
from dotenv import load_dotenv
from typing import List, Optional, Dict, Any
from dataclasses import dataclass
from qdrant_client import QdrantClient
from openai import OpenAI
from sentence_transformers import SentenceTransformer
from interface import PlanResponse, TripPlan, RetrievedItem, PlanRequest
from interface import DayTimeline, TimelineEntry, Spot, Budget, Permits, Safety, Contact, SafetyContacts
from interface import Preparation, PreparationItem
from class_mod.rest_qdrant import RestQdrantClient
import json
from fastapi import HTTPException
load_dotenv()
SYSTEM_PROMPT = """You are a helpful travel assistant. Use the provided context to answer the user's question about travel destinations and places.
If the context doesn't contain relevant information, say so politely and provide general advice if possible. You have to answer in language you are asked."""
'''
'''
class LLMCaller:
def __init__(self):
# Environment variables
self.client = OpenAI(
api_key=os.getenv("SEALION_API"),
base_url=os.getenv("SEALION_BASE_URL"),
)
self.top_k = 1
self.qdrant_host = os.getenv("QDRANT_HOST")
self.qdrant = RestQdrantClient(
url=self.qdrant_host,
timeout=30
)
self.system_prompt = SYSTEM_PROMPT
self.embedding_model = SentenceTransformer("BAAI/bge-m3")
self.collection_name = "TripPlanData"
async def basic_query(self, user_prompt: str, max_tokens: int = 2048, model: str = "aisingapore/Llama-SEA-LION-v3-70B-IT") -> str:
try:
completion = self.client.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": self.system_prompt
},
{
"role": "user",
"content": user_prompt
}
]
)
return completion.choices[0].message.content
except Exception as e:
print(f"Error calling LLM: {e}")
return f"Error: Unable to get LLM response - {str(e)}"
async def query_with_rag(self, plan_request: PlanRequest, collection_name: Optional[str] = None) -> 'PlanResponse':
"""
Perform RAG query using PlanRequest, embed query, search Qdrant, and generate complete PlanResponse via LLM
"""
print(plan_request)
try:
# 1. Create query string from PlanRequest - updated for new fields
destination = plan_request.destination or plan_request.destination_place or "unknown destination"
duration = plan_request.duration or plan_request.trip_duration_days or 1
budget = plan_request.trip_price or 0
query_text = f"Trip from {plan_request.start_place} to {destination}"
# Add new fields to query
if plan_request.travelDates:
query_text += f" on {plan_request.travelDates}"
if duration:
query_text += f" for {duration} days"
if budget:
query_text += f" with budget {budget}"
if plan_request.theme:
query_text += f" {plan_request.theme} themed trip"
if plan_request.interests:
query_text += f" interested in {', '.join(plan_request.interests)}"
if plan_request.budgetTier:
query_text += f" {plan_request.budgetTier} budget tier"
# 2. Generate embedding for the query
query_embedding = self.embedding_model.encode(query_text, normalize_embeddings=True).tolist()
# 3. Search Qdrant for similar content
collection = collection_name or self.collection_name
top_k = self.top_k
search_results = self.qdrant.search(
collection_name=collection,
query_vector=query_embedding,
limit=top_k,
with_payload=True,
timeout=30
)
# 4. Convert search results to RetrievedItem format
retrieved_data = []
context_text = ""
results = []
if 'result' in search_results:
if isinstance(search_results['result'], dict) and 'points' in search_results['result']:
# New format: {'result': {'points': [...]}}
results = search_results['result']['points']
else:
# Old format: {'result': [...]}
results = search_results['result']
elif 'points' in search_results:
# Direct points key (just in case)
results = search_results['points']
for result in results:
place_id = result.get('id') or result.get('point_id', 'Unknown')
payload = result.get('payload', {})
retrieved_item = RetrievedItem(
place_id=place_id,
place_name=payload.get("place_name") or payload.get("name", "Unknown"),
score=result.get('score', 0.0),
)
retrieved_data.append(retrieved_item)
visited_places = ""
if isinstance(payload.get('visited_place'), list):
visited_places = "Visited: " + ", ".join(
[
f"{p.get('name', '')} (lat: {p.get('latitude', '')}, lon: {p.get('longitude', '')})"
for p in payload.get('visited_place', [])
]
)
# Build context from all relevant fields in payload
context_fields = [
payload.get("name", ""),
f"Start: {payload.get('start_place', {}).get('name', '')}" if isinstance(payload.get('start_place'), dict) else "",
f"Destination: {payload.get('destination_place', {}).get('name', '')}" if isinstance(payload.get('destination_place'), dict) else "",
f"Country: {payload.get('country', '')}",
visited_places,
f"Duration: {payload.get('duration', '')} days" if payload.get('duration') else "",
f"Budget: {payload.get('budget', '')} THB" if payload.get('budget') else "",
f"Transportation: {payload.get('transportation', '')}",
f"Accommodation: {payload.get('accommodation', '')}",
f"Safety: {payload.get('safety', '')}",
f"Theme: {payload.get('theme', '')}",
f"Plan details: {payload.get('plan_details', '')}",
f"Source: {payload.get('source', '')}",
payload.get("text", ""), # fallback for generic text field
]
# Filter out empty strings and join with newlines
context_text += "\n" + "\n".join([field for field in context_fields if field])
print(context_text)
# 5. Create detailed prompt for LLM - updated with new fields
llm_prompt = f"""Generate a travel plan in JSON format for:
From: {plan_request.start_place} → To: {destination}
Duration: {duration} days | Budget: {budget} ({plan_request.budgetTier or 'Mid-range'})
Group: {plan_request.groupSize} people | Theme: {plan_request.theme or 'General'}
Interests: {', '.join(plan_request.interests) if plan_request.interests else 'Sightseeing'}
Transport: {plan_request.transportPref or 'Any'} | Stay: {plan_request.stayPref or 'Any'}
Dates: {plan_request.travelDates or 'Flexible'}
*Provide a latitude and longitude for each place in timeline and spots.*.
Context: {context_text[:4000]}{"..." if len(context_text) > 4000 else ""}
Return ONLY this JSON structure:
{{
"tripOverview": "2-3 paragraph trip overview",
"preparation": {{
"overview": "General preparation guidance for this trip",
"items": [
{{"category": "Documents", "items": ["Passport", "Visa", "Travel insurance"], "notes": "Ensure passport validity"}},
{{"category": "Clothing", "items": ["Light clothing", "Rain jacket", "Comfortable shoes"], "notes": "Pack for tropical climate"}},
{{"category": "Equipment", "items": ["Camera", "Power bank", "First aid kit"], "notes": "Essential travel gear"}}
],
"timeline": "2-3 weeks before departure"
}},
"trip_plan": {{
"title": "{duration}-day {plan_request.theme or 'travel'} trip to {destination}",
"date": "{plan_request.travelDates or 'Flexible'}",
"timeline": [
{{"day": 1, "activities": [{{"t": "08:30", "detail": "Activity"}}, {{"t": "12:00", "detail": "Lunch"}}, {{"t": "14:00", "detail": "Activity"}}, {{"t": "18:00", "detail": "Evening"}}]}},
{{"day": 2, "activities": [{{"t": "08:30", "detail": "Activity"}}, {{"t": "12:00", "detail": "Lunch"}}, {{"t": "14:00", "detail": "Activity"}}, {{"t": "18:00", "detail": "Evening"}}]}}
],
"spots": [{{"name": "Location","latitude": float, "longitude": float, "time": "09:30-11:45", "notes": "Details"}}],
"budget": {{"transport": 500, "entrance": 200, "meals": 800, "accommodation": 1200, "activities": 600, "total": 3300}},
"permits": {{"needed": false, "notes": "Requirements", "seasonal": "Best time"}},
"safety": {{
"registration": "Safety info",
"checkins": "Check-in procedures",
"sos": "Emergency: 1669",
"contacts": {{
"ranger": {{"name": "Tourist Police", "phone": "+66-2-123-4567"}},
"hospital": {{"name": "Local Hospital", "phone": "+66-2-310-3000"}},
"police": {{"name": "Police", "phone": "1155"}}
}}
}}
}}
}}
Create preparation checklist based on destination, theme ({plan_request.theme or 'general'}), duration ({duration} days), and group size ({plan_request.groupSize} people).
Include destination-specific requirements, climate considerations, and activity-specific gear.
"""
# 6. Call LLM to generate structured trip plan
llm_response = await self.basic_query(user_prompt=llm_prompt, max_tokens=24048)
print(f"LLM Response: {llm_response}")
# 7. Parse LLM response as JSON
try:
# Clean the response and parse JSON
json_str = llm_response.strip()
if json_str.startswith("```json"):
json_str = json_str[7:]
if json_str.endswith("```"):
json_str = json_str[:-3]
llm_data = json.loads(json_str)
print(f"LLM Data: {llm_data}")
# Convert to PlanResponse structure
trip_plan_data = llm_data.get("trip_plan", {})
# Parse timeline
timeline_data = trip_plan_data.get("timeline", [])
timeline = []
for day_entry in timeline_data:
if isinstance(day_entry, dict) and "day" in day_entry and "activities" in day_entry:
activities = []
for activity in day_entry["activities"]:
if isinstance(activity, dict) and "t" in activity and "detail" in activity:
activities.append(TimelineEntry(t=activity["t"], detail=activity["detail"]))
day_timeline = DayTimeline(day=day_entry["day"], activities=activities)
timeline.append(day_timeline)
# Parse spots
spots_data = trip_plan_data.get("spots", [])
spots = [Spot(name=item["name"], latitude=item.get("latitude"), longitude=item.get("longitude"), time=item["time"], notes=item["notes"]) for item in spots_data]
# Parse budget
budget_data = trip_plan_data.get("budget", {})
budget = Budget(
transport=budget_data.get("transport"),
entrance=budget_data.get("entrance"),
meals=budget_data.get("meals"),
accommodation=budget_data.get("accommodation"),
activities=budget_data.get("activities"),
total=budget_data.get("total")
)
# Parse permits
permits_data = trip_plan_data.get("permits", {})
permits = Permits(
needed=permits_data.get("needed", False),
notes=permits_data.get("notes", ""),
seasonal=permits_data.get("seasonal", "")
) if permits_data else None
# Parse safety
safety_data = trip_plan_data.get("safety", {})
safety = None
if safety_data:
contacts_data = safety_data.get("contacts", {})
contacts = SafetyContacts(
ranger=Contact(**contacts_data["ranger"]) if contacts_data.get("ranger") else None,
hospital=Contact(**contacts_data["hospital"]) if contacts_data.get("hospital") else None,
police=Contact(**contacts_data["police"]) if contacts_data.get("police") else None
)
safety = Safety(
registration=safety_data.get("registration", ""),
checkins=safety_data.get("checkins", ""),
sos=safety_data.get("sos", ""),
contacts=contacts
)
preparation_data = llm_data.get("preparation", {})
preparation = None
if preparation_data:
prep_items = []
for item_data in preparation_data.get("items", []):
prep_item = PreparationItem(
category=item_data.get("category", ""),
items=item_data.get("items", []),
notes=item_data.get("notes", "")
)
prep_items.append(prep_item)
preparation = Preparation(
overview=preparation_data.get("overview", ""),
items=prep_items,
timeline=preparation_data.get("timeline", "")
)
trip_plan = TripPlan(
title=trip_plan_data.get("title", ""),
date=trip_plan_data.get("date", ""),
timeline=timeline,
spots=spots,
budget=budget,
permits=permits,
safety=safety
)
return PlanResponse(
tripOverview=llm_data.get("tripOverview", ""),
query_params=plan_request,
retrieved_data=retrieved_data,
trip_plan=trip_plan,
preparation=preparation, # Add this line
meta={
"status": "success",
"query_text": query_text,
"results_count": len(retrieved_data),
"theme": plan_request.theme,
"interests": plan_request.interests,
"budget_tier": plan_request.budgetTier,
"group_size": plan_request.groupSize
}
)
except json.JSONDecodeError as e:
print(f"Error parsing LLM JSON response: {e}")
print(f"LLM Response: {llm_response}")
fallback_budget = Budget(
transport=0.0,
entrance=0.0,
meals=0.0,
accommodation=0.0,
activities=0.0,
total=0.0
)
return PlanResponse(
tripOverview=llm_response[:500] + "..." if len(llm_response) > 500 else llm_response,
query_params=plan_request,
retrieved_data=retrieved_data,
trip_plan=TripPlan(
title="Error occurred",
date="",
timeline=[],
spots=[],
budget=fallback_budget,
permits=None,
safety=None
),
preparation=None, # Add this line
meta={"status": "error", "error": str(e)}
)
except Exception as e:
print(f"Error in RAG query: {e}")
fallback_budget = Budget(
transport=0.0,
entrance=0.0,
meals=0.0,
accommodation=0.0,
activities=0.0,
total=0.0
)
raise HTTPException(
status_code=500,
detail={
"error": "Internal server error",
"message": str(e),
"details": "An unexpected error occurred while processing the request."
}
)
|